Remaining Useful Life Estimation of Bearings Using Data-Driven Ridge Regression

被引:12
|
作者
Park, Pangun [1 ]
Jung, Mingyu [1 ]
Di Marco, Piergiuseppe [2 ]
机构
[1] Chungnam Natl Univ, Dept Radio & Informat Commun Engn, Daejeon 34134, South Korea
[2] Univ Aquila, Dept Informat Engn Comp Sci & Math, I-67100 Laquila, Italy
来源
APPLIED SCIENCES-BASEL | 2020年 / 10卷 / 24期
基金
新加坡国家研究基金会;
关键词
remaining useful life; fault prognosis; ridge regression; optimization; FAULT-DIAGNOSIS; HEALTH PROGNOSTICS; MAINTENANCE; COMPONENTS;
D O I
10.3390/app10248977
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Predicting the remaining useful life (RUL) of mechanical bearings is a challenging industrial task since RUL can differ even for the same equipment due to many uncertainties such as operating condition, model inaccuracy, and sensory noise in various industrial applications. This paper proposes the RUL prediction method combining analytical model-based and data-driven approaches to forecast when a failure will occur based on the time series data of bearings. Feature importance ranking and principal component analysis construct a reliable and predictable health indicator from various statistical time, frequency, and time-frequency domain features of the observed signal. The adaptive sliding window method then optimizes the parameters of the degradation model based on the ridge regression of the time series sequence with the sliding window. The proposed adaptive scheme provides significant performance improvement in terms of the RUL estimation accuracy and robustness against the possible errors of the degradation model compared to the traditional Bayesian approaches.
引用
收藏
页码:1 / 17
页数:17
相关论文
共 50 条
  • [1] A Data-Driven Approach Based Health Indicator for Remaining Useful Life Estimation of Bearings
    Akuruyejo, Mufutau
    Kowontan, Samuel
    Ben Ali, Jaouher
    2017 18TH INTERNATIONAL CONFERENCE ON SCIENCES AND TECHNIQUES OF AUTOMATIC CONTROL AND COMPUTER ENGINEERING (STA), 2017, : 284 - 289
  • [2] Remaining Useful Life Estimation in Rolling Bearings Utilizing Data-Driven Probabilistic E-Support Vectors Regression
    Loutas, Theodoros H.
    Roulias, Dimitrios
    Georgoulas, George
    IEEE TRANSACTIONS ON RELIABILITY, 2013, 62 (04) : 821 - 832
  • [3] DATA-DRIVEN PREDICTION METHOD FOR REMAINING USEFUL LIFE OF ROLLING BEARINGS
    Xu, Shiyi
    Li, Tianyun
    Zhang, Yao
    PROCEEDINGS OF ASME 2024 43RD INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING, OMAE2024, VOL 2, 2024,
  • [4] Degradation data-driven approach for remaining useful life estimation
    Zhiliang Fan
    Guangbin Liu
    Xiaosheng Si
    Qi Zhang
    Qinghua Zhang
    JournalofSystemsEngineeringandElectronics, 2013, 24 (01) : 173 - 182
  • [5] Degradation data-driven approach for remaining useful life estimation
    Fan, Zhiliang
    Liu, Guangbin
    Si, Xiaosheng
    Zhang, Qi
    Zhang, Qinghua
    JOURNAL OF SYSTEMS ENGINEERING AND ELECTRONICS, 2013, 24 (01) : 173 - 182
  • [6] Feature Extraction for Data-Driven Remaining Useful Life Prediction of Rolling Bearings
    Zhao, Huimin
    Liu, Haodong
    Jin, Yang
    Dang, Xiangjun
    Deng, Wu
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2021, 70
  • [7] Remaining Useful Life Estimation Using ANFIS Algorithm: A Data-Driven Approcah for Prognostics
    Razavi, Seyed Ali
    Najafabadi, Tooraj Abbasian
    Mahmoodian, Ali
    2018 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-CHONGQING 2018), 2018, : 522 - 526
  • [8] Degradation Data-Driven Analysis for Estimation of the Remaining Useful Life of a Motor
    Banerjee, Ahin
    Gupta, Sanjay K.
    Putcha, Chandrasekhar
    ASCE-ASME JOURNAL OF RISK AND UNCERTAINTY IN ENGINEERING SYSTEMS PART A-CIVIL ENGINEERING, 2021, 7 (02):
  • [9] An adaptive data-driven method for accurate prediction of remaining useful life of rolling bearings
    Yanfeng Peng
    Junsheng Cheng
    Yanfei Liu
    Xuejun Li
    Zhihua Peng
    Frontiers of Mechanical Engineering, 2018, 13 : 301 - 310
  • [10] An adaptive data-driven method for accurate prediction of remaining useful life of rolling bearings
    Peng, Yanfeng
    Cheng, Junsheng
    Liu, Yanfei
    Li, Xuejun
    Peng, Zhihua
    FRONTIERS OF MECHANICAL ENGINEERING, 2018, 13 (02) : 301 - 310