Physical Orphaning versus Chemical Instability: Is Dendritic Electrodeposition of Li Fatal?

被引:88
作者
Zheng, Jingxu [1 ]
Tang, Tian [1 ]
Zhao, Qng [2 ]
Liu, Xiaotun [2 ]
Deng, Yue [1 ]
Archer, Lynden A. [2 ]
机构
[1] Cornell Univ, Dept Mat Sci & Engn, Ithaca, NY 14853 USA
[2] Cornell Univ, Robert Frederick Smith Sch Chem & Biomol Engn, Ithaca, NY 14853 USA
关键词
SOLID-ELECTROLYTE INTERPHASES; LITHIUM METAL ANODE; HIGH-ENERGY; GROWTH;
D O I
10.1021/acsenergylett.9b00750
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The dendritic electrodeposition of lithium, leading to physical orphaning and chemical instability, is considered responsible for the poor reversibility and premature failure of electrochemical cells that utilize Li metal anodes. Herein we critically assess the roles of physical orphaning and chemical instability of electrodeposited Li on electrode reversibility using planar and nonplanar electrode architectures. The nonplanar electrodes allow the morphology of electrodeposited Li to be interrogated in detail and in the absence of complications associated with cell stacking pressure. We find that physical orphaning is a key determinant of the poor reversibility of Li. We report further that fiber-like, dendritic electrodeposition is an intrinsic characteristic of Li, irrespective of the electrolyte solvent chemistry. With guaranteed electronic access to prevent physical loss, we finally show that a Li metal electrode exhibits high levels of reversibility (99.4% CE), even when the metal electrodeposits are in obvious, dendritic morphologies. We take advantage of these findings to create high-loading (7-8 mAh/cm(2)) Li parallel to LFP full cells with a nearly unity N:P ratio and demonstrate that these cells exhibit good reversibility.
引用
收藏
页码:1349 / 1355
页数:13
相关论文
共 28 条
[1]   Accurate Determination of Coulombic Efficiency for Lithium Metal Anodes and Lithium Metal Batteries [J].
Adams, Brian D. ;
Zheng, Jianming ;
Ren, Xiaodi ;
Xu, Wu ;
Zhang, Ji-Guang .
ADVANCED ENERGY MATERIALS, 2018, 8 (07)
[2]   Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries [J].
Albertus, Paul ;
Babinec, Susan ;
Litzelman, Scott ;
Newman, Aron .
NATURE ENERGY, 2018, 3 (01) :16-21
[3]   Effect of Fluoroethylene Carbonate Electrolytes on the Nanostructure of the Solid Electrolyte Interphase and Performance of Lithium Metal Anodes [J].
Brown, Zachary L. ;
Jurng, Sunhyung ;
Cao Cuong Nguyen ;
Lucht, Brett L. .
ACS APPLIED ENERGY MATERIALS, 2018, 1 (07) :3057-3062
[4]   Dead lithium: mass transport effects on voltage, capacity, and failure of lithium metal anodes [J].
Chen, Kuan-Hung ;
Wood, Kevin N. ;
Kazyak, Eric ;
LePage, William S. ;
Davis, Andrew L. ;
Sanchez, Adrian J. ;
Dasgupta, Neil P. .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (23) :11671-11681
[5]   Critical Parameters for Evaluating Coin Cells and Pouch Cells of Rechargeable Li-Metal Batteries [J].
Chen, Shuru ;
Niu, Chaojiang ;
Lee, Hongkyung ;
Li, Qiuyan ;
Yu, Lu ;
Xu, Wu ;
Zhang, Ji-Guang ;
Dufek, Eric J. ;
Whittingham, M. Stanley ;
Meng, Shirley ;
Xiao, Jie ;
Liu, Jun .
JOULE, 2019, 3 (04) :1094-1105
[6]   Lithium Fluoride Additives for Stable Cycling of Lithium Batteries at High Current Densities [J].
Choudhury, Snehashis ;
Archer, Lynden A. .
ADVANCED ELECTRONIC MATERIALS, 2016, 2 (02)
[7]  
Geise N. R, 2018, UNDERSTANDING COULOM, P594
[8]   Mixed Ion and Electron-Conducting Scaffolds for High-Rate Lithium Metal Anodes [J].
Guo, Wenqing ;
Liu, Shan ;
Guan, Xuze ;
Zhang, Xinyue ;
Liu, Xinjiang ;
Luo, Jiayan .
ADVANCED ENERGY MATERIALS, 2019, 9 (20)
[9]  
Jiao SH, 2018, JOULE, V2, P110, DOI [10.1016/j.joule.2017.10.007, 10.1016/j.joule.2018.03.010]
[10]   Langmuir-Blodgett artificial solid-electrolyte interphases for practical lithium metal batteries [J].
Kim, Mun Sek ;
Ryu, Ji-Hyun ;
Deepika ;
Lim, Young Rok ;
Nah, In Wook ;
Lee, Kwang-Ryeol ;
Archer, Lynden A. ;
Cho, Won Il .
NATURE ENERGY, 2018, 3 (10) :889-898