Characterizing Immune Responses in Whole Slide Images of Cancer With Digital Pathology and Pathomics

被引:8
作者
Gupta, Rajarsi [1 ]
Le, Han [2 ]
Van Arnam, John [1 ]
Belinsky, David [2 ]
Hasan, Mahmudul [2 ]
Samaras, Dimitris [2 ]
Kurc, Tahsin [1 ]
Saltz, Joel H. [1 ]
机构
[1] SUNY Stony Brook, Dept Biomed Informat, 100 Nicolls Rd, Stony Brook, NY 11794 USA
[2] SUNY Stony Brook, Dept Comp Sci, 100 Nicolls Rd, Stony Brook, NY 11794 USA
关键词
Pathomics; Cancer tissue analytics; Tumor immune interactions; Tumor-infiltrating lymphocytes (TILs); Cancer immunopathology; Precision medicine; TUMOR-INFILTRATING LYMPHOCYTES; ARTIFICIAL-INTELLIGENCE TOOLS; STANDARDIZED METHOD; BREAST-CANCER; SOLID TUMORS; BIOMARKERS; CARCINOMA; LOCATION; PROPOSAL; FUTURE;
D O I
10.1007/s40139-020-00217-7
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Purpose of Review Our goal is to show how readily available Pathomics tissue analytics can be used to study tumor immune interactions in cancer. We provide a brief overview of how Pathomics complements traditional histopathologic examination of cancer tissue samples. We highlight a novel Pathomics application, Tumor-TILs, that quantitatively measures and generates maps of tumor infiltrating lymphocytes in breast, pancreatic, and lung cancer by leveraging deep learning computer vision applications to perform automated analyses of whole slide images. Recent Findings Tumor-TIL maps have been generated to analyze WSIs from thousands of cases of breast, pancreatic, and lung cancer. We report the availability of these tools in an effort to promote collaborative research and motivate future development of ensemble Pathomics applications to discover novel biomarkers and perform a wide range of correlative clinicopathologic research in cancer immunopathology and beyond. Summary Tumor immune interactions in cancer are a fascinating aspect of cancer pathobiology with particular significance due to the emergence of immunotherapy. We present simple yet powerful specialized Pathomics methods that serve as powerful clinical research tools and potential standalone clinical screening tests to predict clinical outcomes and treatment responses for precision medicine applications in immunotherapy.
引用
收藏
页码:133 / 148
页数:16
相关论文
共 80 条
[1]  
Aeffner Famke, 2019, J Pathol Inform, V10, P9, DOI 10.4103/jpi.jpi_82_18
[2]  
Almeida Jonas S, 2012, J Pathol Inform, V3, P25, DOI 10.4103/2153-3539.98813
[3]   Report on computational assessment of Tumor Infiltrating Lymphocytes from the International Immuno-Oncology Biomarker Working Group [J].
Amgad, Mohamed ;
Stovgaard, Elisabeth Specht ;
Balslev, Eva ;
Thagaard, Jeppe ;
Chen, Weijie ;
Dudgeon, Sarah ;
Sharma, Ashish ;
Kerner, Jennifer K. ;
Denkert, Carsten ;
Yuan, Yinyin ;
AbdulJabbar, Khalid ;
Wienert, Stephan ;
Savas, Peter ;
Voorwerk, Leonie ;
Beck, Andrew H. ;
Madabhushi, Anant ;
Hartman, Johan ;
Sebastian, Manu M. ;
Horlings, Hugo M. ;
Hudecek, Jan ;
Ciompi, Francesco ;
Moore, David A. ;
Singh, Rajendra ;
Roblin, Elvire ;
Balancin, Marcelo Luiz ;
Mathieu, Marie-Christine ;
Lennerz, Jochen K. ;
Kirtani, Pawan ;
Chen, I-Chun ;
Braybrooke, Jeremy P. ;
Pruneri, Giancarlo ;
Demaria, Sandra ;
Adams, Sylvia ;
Schnitt, Stuart J. ;
Lakhani, Sunil R. ;
Rojo, Federico ;
Comerma, Laura ;
Badve, Sunil S. ;
Khojasteh, Mehrnoush ;
Symmans, W. Fraser ;
Sotiriou, Christos ;
Gonzalez-Ericsson, Paula ;
Pogue-Geile, Katherine L. ;
Kim, Rim S. ;
Rimm, David L. ;
Viale, Giuseppe ;
Hewitt, Stephen M. ;
Bartlett, John M. S. ;
Penault-Llorca, Frederique ;
Goel, Shom .
NPJ BREAST CANCER, 2020, 6 (01)
[4]   Connecting Histopathology Imaging and Proteomics in Kidney Cancer through Machine Learning [J].
Azuaje, Francisco ;
Kim, Sang-Yoon ;
Hernandez, Daniel Perez ;
Dittmar, Gunnar .
JOURNAL OF CLINICAL MEDICINE, 2019, 8 (10)
[5]   Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer [J].
Bejnordi, Babak Ehteshami ;
Veta, Mitko ;
van Diest, Paul Johannes ;
van Ginneken, Bram ;
Karssemeijer, Nico ;
Litjens, Geert ;
van der Laak, Jeroen A. W. M. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2017, 318 (22) :2199-2210
[6]   Artificial intelligence in digital pathology - new tools for diagnosis and precision oncology [J].
Bera, Kaustav ;
Schalper, Kurt A. ;
Rimm, David L. ;
Velcheti, Vamsidhar ;
Madabhushi, Anant .
NATURE REVIEWS CLINICAL ONCOLOGY, 2019, 16 (11) :703-715
[7]  
Bukhari SUK, 2020, ASSESSMENT COMPUTER, DOI 10.1101/2020.07.14.20152116
[8]   Tuning cancer fate: the unremitting role of host immunity [J].
Cali, B. ;
Molon, B. ;
Viola, A. .
OPEN BIOLOGY, 2017, 7 (04)
[9]   Clinical-grade computational pathology using weakly supervised deep learning on whole slide images [J].
Campanella, Gabriele ;
Hanna, Matthew G. ;
Geneslaw, Luke ;
Miraflor, Allen ;
Silva, Vitor Werneck Krauss ;
Busam, Klaus J. ;
Brogi, Edi ;
Reuter, Victor E. ;
Klimstra, David S. ;
Fuchs, Thomas J. .
NATURE MEDICINE, 2019, 25 (08) :1301-+
[10]  
Chennubhotla C, 2017, Yearb Med Inform, V26, P110, DOI 10.15265/IY-2017-041