A Sharp Inequality for the Strichartz Norm

被引:50
作者
Carneiro, Emanuel [1 ]
机构
[1] Univ Texas Austin, Dept Math, Austin, TX 78712 USA
基金
美国国家科学基金会;
关键词
D O I
10.1093/imrn/rnp045
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let u : R x R-n -> C be the solution of the linear Schrodinger equation {u((0,x) = f(x).)(iut + Delta u = 0) In the first part of this paper, we obtain a sharp inequality for the Strichartz norm parallel to u(t, x)parallel to (LtLx2k)-L-2k(R x R-n), where k is an element of Z, k >= 2, and (n, k) not equal (1, 2), that admits only Gaussian maximizers. As corollaries, we obtain sharp forms of the classical Strichartz inequalities in low dimensions (works of Foschi [4] and Hundertmark-Zharnitsky [6]) and also sharp forms of some Sobolev-Strichartz inequalities. In the second part of the paper, we express Foschi's [4] sharp inequalities for the Schrodinger and wave equations in the broader setting of sharp restriction/extension estimates for the paraboloid and the cone.
引用
收藏
页码:3127 / 3145
页数:19
相关论文
共 12 条
[1]  
BENNETT JM, ANAL PARTIA IN PRESS
[2]   SUPERADDITIVITY OF FISHER INFORMATION AND LOGARITHMIC SOBOLEV INEQUALITIES [J].
CARLEN, EA .
JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 101 (01) :194-211
[3]  
Cazenave T, 2003, Semilinear Schrodinger Equations
[4]  
Foschi D, 2007, J EUR MATH SOC, V9, P739
[5]   OSCILLATORY INTEGRALS AND MULTIPLIERS ON FLP [J].
HORMANDER, L .
ARKIV FOR MATEMATIK, 1973, 11 (01) :1-11
[6]   On sharp strichartz inequalities in low dimensions [J].
Hundertmark, Dirk ;
Zharnitsky, Vadim .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2006, 2006
[7]   On the existence of a maximizer for the Strichartz inequality [J].
Kunze, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 243 (01) :137-162
[8]  
Shao SL, 2009, ELECTRON J DIFFER EQ
[9]   RESTRICTIONS OF FOURIER-TRANSFORMS TO QUADRATIC SURFACES AND DECAY OF SOLUTIONS OF WAVE-EQUATIONS [J].
STRICHARTZ, RS .
DUKE MATHEMATICAL JOURNAL, 1977, 44 (03) :705-714
[10]   A sharp bilinear restriction estimate for paraboloids [J].
Tao, T .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2003, 13 (06) :1359-1384