Conductance interference effects in an electron-beam-resist-free chemical vapor deposition graphene device sandwiched between two h-BN sheets

被引:7
作者
Chuang, Chiashain [1 ]
Mineharu, Masaaki [2 ]
Matsunaga, Masahiro [2 ,3 ]
Liu, Chieh-Wen [4 ,5 ]
Wu, Bi-Yi [5 ]
Kim, Gil-Ho [6 ,7 ]
Watanabe, Kenji [8 ]
Taniguchi, Takashi [8 ]
Liang, Chi-Te [5 ]
Aoki, Nobuyuki [2 ]
机构
[1] Chung Yuan Christian Univ, Dept Elect Engn, Taoyuan 320, Taiwan
[2] Chiba Univ, Dept Mat Sci, Chiba 2638522, Japan
[3] Nagoya Univ, Venture Business Lab, Nagoya, Aichi 4648601, Japan
[4] Case Western Reserve Univ, Dept Phys, 2076 Adelber Rd, Cleveland, OH 44106 USA
[5] Natl Taiwan Univ, Grad Inst Appl Phys, Taipei 106, Taiwan
[6] Sungkyunkwan Univ, Sch Elect & Elect Engn, Suwon 16419, South Korea
[7] Sungkyunkwan Univ, Sungkyunkwan Adv Inst Nanotechnol SAINT, Suwon 16419, South Korea
[8] Natl Inst Mat Sci, Adv Mat Lab, 1-1 Namki, Tsukuba, Ibaraki 3050044, Japan
关键词
Graphene; Chemical vapor deposition; Boron nitride; Coherent; Interference; BORON-NITRIDE; BALLISTIC TRANSPORT; GRAIN-BOUNDARIES; HIGH-QUALITY; LARGE-AREA; FILMS; STRAIN;
D O I
10.1016/j.carbon.2019.07.057
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We report fabrication and measurements of hexagonal boron nitride (h-BN)/chemical vapor deposition (CVD) graphene/h-BN heterostructure devices without using expensive, time-consuming electron-beam lithography and toxic carbon tetrafluoride or sulfur tetrafluoride etching. We use efficient transfer of h-BN/CVD graphene by polypropylene carbonate onto a pre-prepared metal contacts/h-BN/SiO2 substrate. In this case, CVD-graphene is suspended from the h-BN substrate which allows efficient gas annealing process for improving the device mobility. Interestingly, we find that the top h-BN capping layer could enhance the carrier interference effect in CVD graphene, a great advantage for low-cost graphene-based interference-type electronic devices. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:238 / 243
页数:6
相关论文
共 56 条
[31]   Berry phase of dislocations in graphene and valley conserving decoherence [J].
Mesaros, A. ;
Sadri, D. ;
Zaanen, J. .
PHYSICAL REVIEW B, 2009, 79 (15)
[32]  
Mesaros A., 2019, PHYS REV B, V82
[33]   Phase-coherent transport in graphene quantum billiards [J].
Miao, F. ;
Wijeratne, S. ;
Zhang, Y. ;
Coskun, U. C. ;
Bao, W. ;
Lau, C. N. .
SCIENCE, 2007, 317 (5844) :1530-1533
[34]   Rapid and catalyst-free van der Waals epitaxy of graphene on hexagonal boron nitride [J].
Mishra, Neeraj ;
Miseikis, Vaidotas ;
Convertino, Domenica ;
Gemmi, Mauro ;
Piazza, Vincenzo ;
Coletti, Camilla .
CARBON, 2016, 96 :497-502
[35]   Toward graphene-based quantum interference devices [J].
Munarriz, J. ;
Dominguez-Adame, F. ;
Malyshev, A. V. .
NANOTECHNOLOGY, 2011, 22 (36)
[36]   Uniaxial Strain on Graphene: Raman Spectroscopy Study and Band-Gap Opening [J].
Ni, Zhen Hua ;
Yu, Ting ;
Lu, Yun Hao ;
Wang, Ying Ying ;
Feng, Yuan Ping ;
Shen, Ze Xiang .
ACS NANO, 2008, 2 (11) :2301-2305
[37]   Electric field effect in atomically thin carbon films [J].
Novoselov, KS ;
Geim, AK ;
Morozov, SV ;
Jiang, D ;
Zhang, Y ;
Dubonos, SV ;
Grigorieva, IV ;
Firsov, AA .
SCIENCE, 2004, 306 (5696) :666-669
[38]   CHEMICAL VAPOUR DEPOSITION Making graphene on a large scale [J].
Obraztsov, Alexander N. .
NATURE NANOTECHNOLOGY, 2009, 4 (04) :212-213
[39]   Chemical Vapor Deposition-Derived Graphene with Electrical Performance of Exfoliated Graphene [J].
Petrone, Nicholas ;
Dean, Cory R. ;
Meric, Inanc ;
van der Zande, Arend M. ;
Huang, Pinshane Y. ;
Wang, Lei ;
Muller, David ;
Shepard, Kenneth L. ;
Hone, James .
NANO LETTERS, 2012, 12 (06) :2751-2756
[40]   Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition [J].
Reina, Alfonso ;
Jia, Xiaoting ;
Ho, John ;
Nezich, Daniel ;
Son, Hyungbin ;
Bulovic, Vladimir ;
Dresselhaus, Mildred S. ;
Kong, Jing .
NANO LETTERS, 2009, 9 (01) :30-35