THE CENTRAL LIMIT THEOREM FOR EIGENVALUES

被引:3
作者
Aoun, Richard [1 ]
机构
[1] Amer Univ Beirut, Dept Math, Fac Arts & Sci, POB 11-0236 Riad El Solh, Beirut 11072020, Lebanon
关键词
Random matrix products; Lyapunov exponents; stationary measures; central limit theorem; PRODUCTS; SUBGROUPS;
D O I
10.1090/proc/15226
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that the spectral radius of a strongly irreducible random walk on GL(d)(R) (or more generally the vector of moduli of eigenvalues of a Zariski-dense random walk on a linear reductive group) satisfies a central limit theorem under an order two moment assumption.
引用
收藏
页码:859 / 873
页数:15
相关论文
共 22 条
[1]  
Aoun R., 2013, MONOGR ENSEIGN MATH, V43, P171
[2]  
Aoun R., 2019, ARXIV190807469
[3]   RANDOM SUBGROUPS OF LINEAR GROUPS ARE FREE [J].
Aoun, Richard .
DUKE MATHEMATICAL JOURNAL, 2011, 160 (01) :117-173
[4]   AFFINE ANOSOV DIFFEOMORPHISMS WITH STABLE AND UNSTABLE DIFFERENTIABLE FOLIATIONS [J].
BENOIST, Y ;
LABOURIE, F .
INVENTIONES MATHEMATICAE, 1993, 111 (02) :285-308
[5]  
Benoist Y, 1997, GEOM FUNCT ANAL, V7, P1, DOI 10.1007/PL00001613
[6]   Central limit theorem on hyperbolic groups [J].
Benoist, Y. ;
Quint, J. -F. .
IZVESTIYA MATHEMATICS, 2016, 80 (01) :3-23
[7]   CENTRAL LIMIT THEOREM FOR LINEAR GROUPS [J].
Benoist, Yves ;
Quint, Jean-Francois .
ANNALS OF PROBABILITY, 2016, 44 (02) :1308-1340
[8]  
Benoist Yves, 2016, SERIES MODERN SURVEY, V62
[9]  
Bougerol Philippe, 1985, PROGR PROBABILITY ST, V8
[10]  
Breuillard E, 2008, ARXIV08041395