A novel iron-lead redox flow battery for large-scale energy storage

被引:39
作者
Zeng, Y. K. [1 ]
Zhao, T. S. [1 ]
Zhou, X. L. [1 ]
Wei, L. [1 ]
Ren, Y. X. [1 ]
机构
[1] Hong Kong Univ Sci & Technol, Dept Mech & Aerosp Engn, Kowloon, Hong Kong, Peoples R China
关键词
Flow battery; Iron-lead redox flow battery; Energy storage; Energy efficiency; Cycle stability; SOLUBLE LEAD(II); FIELD DESIGNS; ALL-VANADIUM; ELECTROLYTE; PERFORMANCE; EFFICIENCY; PROGRESS; DENSITY; MODEL;
D O I
10.1016/j.jpowsour.2017.02.018
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The redox flow battery (RFB) is one of the most promising large-scale energy storage technologies for the massive utilization of intermittent renewables especially wind and solar energy. This work presents a novel redox flow battery that utilizes inexpensive and abundant Fe(II)/Fe(III) and Pb/Pb(II) redox couples as redox materials. Experimental results show that both the Fe(II)/Fe(III) and Pb/Pb(II) redox couples have fast electrochemical kinetics in methanesulfonic acid, and that the coulombic efficiency and energy efficiency of the battery are, respectively, as high as 96.2% and 86.2% at 40 mA cm(-2). Furthermore, the battery exhibits stable performance in terms of efficiencies and discharge capacities during the cycle test. The inexpensive redox materials, fast electrochemical kinetics and stable cycle performance make the present battery a promising candidate for large-scale energy storage applications. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:97 / 102
页数:6
相关论文
共 43 条
[1]   Alkaline direct oxidation fuel cell with non-platinum catalysts capable of converting glucose to electricity at high power output [J].
An, L. ;
Zhao, T. S. ;
Shen, S. Y. ;
Wu, Q. X. ;
Chen, R. .
JOURNAL OF POWER SOURCES, 2011, 196 (01) :186-190
[2]   A novel flow battery: A lead acid battery based on an electrolyte with soluble lead(II) Part VIII. The cycling of a 10 cm x 10 cm flow cell [J].
Collins, John ;
Kear, Gareth ;
Li, Xiaohong ;
Low, C. T. John ;
Pletcher, Derek ;
Tangirala, Ravichandra ;
Stratton-Campbell, Duncan ;
Walsh, Frank C. ;
Zhang, Caiping .
JOURNAL OF POWER SOURCES, 2010, 195 (06) :1731-1738
[3]  
Gahn R. F., 1985, TM87034 NASA LEW RES
[4]   A zinc-iron redox-flow battery under $100 per kW h of system capital cost [J].
Gong, Ke ;
Ma, Xiaoya ;
Conforti, Kameron M. ;
Kuttler, Kevin J. ;
Grunewald, Jonathan B. ;
Yeager, Kelsey L. ;
Bazant, Martin Z. ;
Gu, Shuang ;
Yan, Yushan .
ENERGY & ENVIRONMENTAL SCIENCE, 2015, 8 (10) :2941-2945
[5]   Studies of Iron-Ligand Complexes for an All-Iron Flow Battery Application [J].
Hawthorne, Krista L. ;
Wainright, Jesse S. ;
Savinell, Robert F. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2014, 161 (10) :A1662-A1671
[6]   Maximizing plating density and efficiency for a negative deposition reaction in a flow battery [J].
Hawthorne, Krista L. ;
Wainright, Jesse S. ;
Savinell, Robert F. .
JOURNAL OF POWER SOURCES, 2014, 269 :216-224
[7]   A novel flow battery: A lead acid battery based on an electrolyte with soluble lead(II) - Part I. Preliminary studies [J].
Hazza, A ;
Pletcher, D ;
Wills, R .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2004, 6 (08) :1773-1778
[8]   Charting the known chemical space for non-aqueous lithium-air battery electrolyte solvents [J].
Husch, Tamara ;
Korth, Martin .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (35) :22596-22603
[9]   A metal-free organic-inorganic aqueous flow battery [J].
Huskinson, Brian ;
Marshak, Michael P. ;
Suh, Changwon ;
Er, Sueleyman ;
Gerhardt, Michael R. ;
Galvin, Cooper J. ;
Chen, Xudong ;
Aspuru-Guzik, Alan ;
Gordon, Roy G. ;
Aziz, Michael J. .
NATURE, 2014, 505 (7482) :195-+
[10]   Characterization of a zinc-cerium flow battery [J].
Leung, P. K. ;
Ponce-de-Leon, C. ;
Low, C. T. J. ;
Shah, A. A. ;
Walsh, F. C. .
JOURNAL OF POWER SOURCES, 2011, 196 (11) :5174-5185