Minimal identities for right-symmetric algebras

被引:11
作者
Dzhumadil'daev, A [1 ]
机构
[1] Inst Math, Almaty 480021, Kazakhstan
关键词
D O I
10.1006/jabr.1999.8109
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An algebra A with multiplication A x A --> A, (a, b) --> a o b, is called right symmetric, if a o (b o c) - (a o b) o c = a o (c o b) - (a o c) o b, for any a, b, c epsilon A. The multiplication of right-symmetric Witt algebras W-n = {ud(i) : u epsilon U,U = K[x+1/1 , . . . , x+1/n], or = K[x(1), . . . , x(n)], i = 1, . . . , n}, p = 0, or W-n (m) = {ud(i) : u epsilon U,U = O-n(m)}, p > 0, are given by ud(i) o vd(j) = vd(j)(u)d(i). An analogue of the Amitsur-Levitzki theorem for right-symmetric Witt algebras is established. Right-symmetric Witt algebras of rank n satisfy the standard right-symmetric identity of degree 2 + 1 : Sigma(sigma epsilon Sym2n) sign(sigma)a(sigma(1)) o (a(sigma(2)) o . . . o (a(sigma(2n)) o a(2n+1)) . . . ) = 0. The minimal degree for left polynomial identities of W-n(r sym), W-n(+r sym), p = 0, is 2n + 1. All left polynomial identities of right-symmetric Witt algebras of minimal degree follow from the left standard right-symmetric identify s(2n)(r sym) = 0, if p not equal 2. (C) 2000 Academic Press.
引用
收藏
页码:201 / 230
页数:30
相关论文
共 15 条
[1]  
AMITSUR SA, 1950, P AM MATH SOC, V1, P449
[2]  
BALINSKII AA, 1985, DOKL AKAD NAUK SSSR+, V283, P1036
[3]  
DZHUMADILDAEV AS, 1988, FUNCT ANAL APPL+, V22, P226
[4]  
DZHUMADILDAEV AS, IN PRESS
[5]  
DZHUMADILDAEV AS, 1999, J MATH SCI, V93, P1836
[6]  
DZHUMADILDAEV AS, 1982, VESTN MOSK U MAT M+, V37, P63
[7]   ON DEFORMATION OF RINGS + ALGEBRAS [J].
GERSTENHABER, M .
ANNALS OF MATHEMATICS, 1964, 79 (01) :59-&
[8]  
Koszul J-L., 1961, B SOC MATH FRANCE, V89, P515, DOI [10.24033/bsmf.1572, DOI 10.24033/BSMF.1572]
[9]  
Osborn J., 1992, NOVA J ALGEBRA GEOM, V1, P1
[10]  
OSBORN JM, 1992, COMMUN ALGEBRA, V20, P2729