Effect of solution treatment on microstructure and mechanical properties of as-cast Al-12Si-4Cu-2Ni-0.8Mg-0.2Gd alloy

被引:2
作者
Sui, Yu-dong [1 ,2 ,3 ]
Jiang, Ye-hua [1 ]
Wang, Qu-dong [2 ,3 ]
机构
[1] Kunming Univ Sci & Technol, Sch Mat Sci & Engn, Kunming 650093, Yunnan, Peoples R China
[2] Shanghai Jiao Tong Univ, Natl Engn Res Ctr Light Alloys Net Forming, Shanghai 200240, Peoples R China
[3] Shanghai Jiao Tong Univ, State Key Lab Met Matrix Composite, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
Al-Si-Cu-Ni-Mg alloy; Gd element; solution treatment; microstructure; mechanical properties; TG146; 21; A; HEAT-TREATMENT; TENSILE PROPERTIES; ALUMINUM; IMPROVEMENT; EVOLUTION; SILICON;
D O I
10.1007/s41230-022-1076-4
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
Effect of solution treatment on microstructure and mechanical properties of Al-12Si-4Cu-2Ni-0.8Mg-0.2Gd alloy was investigated. Results show the Si particles become stable and more intermetallic compounds dissolve in the matrix after solution treatment at 500 degrees C for 2 h followed by 540 degrees C for 3 h (T4). The skeleton-like Al3CuNi develops into two parts in the T4 alloy: one is Al3CuNi which has the framework shape; the other is intermetallics including the Al3CuNi (size: 5-10 mu m) and AlSiCuNiGd phases (size: <= 5 mu m) with complex structure. Adding 0.2% Gd can improve the mechanical properties of the alloys after two-step solution treatment (500 degrees C/2 h followed by 540 degrees C/3 h), the hardness of the alloy increases from 130.9 HV to 135.8 HV compared with the alloy with one-step solution treatment (500 degrees C/2 h), the engineering strength increases from 335.45 MPa to 352.03 MPa and the fracture engineering strain increases from 1.44% to 1.67%.
引用
收藏
页码:238 / 244
页数:7
相关论文
共 27 条
[1]   Effects of multiple-step thermal ageing treatment on the hardness characteristics of A356.0-type Al-Si-Mg alloy [J].
Abdulwahab, M. ;
Madugu, I. A. ;
Yaro, S. A. ;
Hassan, S. B. ;
Popoola, A. P. I. .
MATERIALS & DESIGN, 2011, 32 (03) :1159-1166
[2]   Improvement of the tensile properties of an Al-Si-Cu-Mg aluminum industrial alloy by using multi stage solution heat treatments [J].
Aguilera Luna, I. ;
Mancha Molinar, H. ;
Castro Roman, M. J. ;
Escobedo Bocardo, Jc. ;
Herrera Trejo, M. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2013, 561 :1-6
[3]  
[Anonymous], 2009, 689212009 ISO
[4]   Constituent phase diagrams of the Al-Cu-Fe-Mg-Ni-Si system and their application to the analysis of aluminium piston alloys [J].
Belov, NA ;
Eskin, DG ;
Avxentieva, NN .
ACTA MATERIALIA, 2005, 53 (17) :4709-4722
[5]   Compositional evolution of Q-phase precipitates in an aluminum alloy [J].
Biswas, Aniruddha ;
Siegel, Donald J. ;
Seidman, David N. .
ACTA MATERIALIA, 2014, 75 :322-336
[6]   Effect of phosphorus and heat treatment on microstructure of Al-25% Si alloy [J].
Dang, Bo ;
Jian, Zeng-yun ;
Xu, Jun-feng ;
Chang, Fang-e ;
Zhu, Man .
CHINA FOUNDRY, 2017, 14 (01) :10-15
[7]  
Eremenko VN., 1979, MAT SCI, V14, P579, DOI [10.1007/BF01159987, DOI 10.1007/BF01159987]
[8]   The effect of spheroidisation heat treatment on the creep resistance of a cast AlSi12CuMgNi piston alloy [J].
Fernandez-Gutierrez, R. ;
Requena, G. C. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2014, 598 :147-153
[9]   DIFFUSION OF SILICON IN ALUMINUM [J].
FUJIKAWA, SI ;
HIRANO, KI ;
FUKUSHIMA, Y .
METALLURGICAL TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1978, 9 (12) :1811-1815
[10]   Interdiffusion between aluminum and Al-Mg alloys [J].
Fujikawa, SI ;
Takada, Y .
DEFECT AND DIFFUSION FORUM, 1997, 143 :409-414