Convergence to a Single Wave in the Fisher-KPP Equation

被引:24
作者
Nolen, James [1 ]
Roquejoffre, Jean-Michel [2 ]
Ryzhik, Lenya [3 ]
机构
[1] Duke Univ, Dept Math, Durham, NC 27708 USA
[2] Univ Paul Sabatier, CNRS, Inst Math, UMR 5219, 118 route Narbonne, F-31062 Toulouse, France
[3] Stanford Univ, Dept Math, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
Traveling waves; KPP; Front propagation; Asymptotic analysis; Reaction-diffusion; BROWNIAN-MOTION; DELAY; KOLMOGOROV; STATISTICS; FRONTIER;
D O I
10.1007/s11401-017-1087-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The authors study the large time asymptotics of a solution of the Fisher-KPP reaction-diffusion equation, with an initial condition that is a compact perturbation of a step function. A well-known result of Bramson states that, in the reference frame moving as 2t-(3/2) log t+x(infinity), the solution of the equation converges as t -> +infinity to a translate of the traveling wave corresponding to the minimal speed c* = 2. The constant x(infinity) depends on the initial condition u(0, x). The proof is elaborate, and based on probabilistic arguments. The purpose of this paper is to provide a simple proof based on PDE arguments.
引用
收藏
页码:629 / 646
页数:18
相关论文
共 22 条
[1]   Branching Brownian motion seen from its tip [J].
Aidekon, E. ;
Berestycki, J. ;
Brunet, E. ;
Shi, Z. .
PROBABILITY THEORY AND RELATED FIELDS, 2013, 157 (1-2) :405-451
[2]  
[Anonymous], 1937, B MOSCOW U MATH MECH
[3]   The extremal process of branching Brownian motion [J].
Arguin, Louis-Pierre ;
Bovier, Anton ;
Kistler, Nicola .
PROBABILITY THEORY AND RELATED FIELDS, 2013, 157 (3-4) :535-574
[4]   POISSONIAN STATISTICS IN THE EXTREMAL PROCESS OF BRANCHING BROWNIAN MOTION [J].
Arguin, Louis-Pierre ;
Bovier, Anton ;
Kistler, Nicola .
ANNALS OF APPLIED PROBABILITY, 2012, 22 (04) :1693-1711
[5]   Front propagation in periodic excitable media [J].
Berestycki, H ;
Hamel, F .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2002, 55 (08) :949-1032
[6]  
BRAMSON M, 1983, MEM AM MATH SOC, V44, P1
[7]   MAXIMAL DISPLACEMENT OF BRANCHING BROWNIAN-MOTION [J].
BRAMSON, MD .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1978, 31 (05) :531-581
[8]   Statistics at the tip of a branching random walk and the delay of traveling waves [J].
Brunet, E. ;
Derrida, B. .
EPL, 2009, 87 (06)
[9]   A Branching Random Walk Seen from the Tip [J].
Brunet, Eric ;
Derrida, Bernard .
JOURNAL OF STATISTICAL PHYSICS, 2011, 143 (03) :420-446
[10]   Slowdown for Time Inhomogeneous Branching Brownian Motion [J].
Fang, Ming ;
Zeitouni, Ofer .
JOURNAL OF STATISTICAL PHYSICS, 2012, 149 (01) :1-9