Quantum gravity and Regge calculus

被引:229
作者
Immirzi, G [1 ]
机构
[1] IST NAZL FIS NUCL, I-06100 PERUGIA, ITALY
关键词
D O I
10.1016/S0920-5632(97)00354-X
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
This is an informal review of the formulation of canonical general relativity and of its implications for quantum gravity; the various versions are compared, both in the continuum and in a discretized approximation suggested by Regge calculus. I also show that the weakness of the link with the geometric content of the theory gives rise to what I think is a serious flaw in the claimed derivation of a discrete structure for space at the quantum level.
引用
收藏
页码:65 / 72
页数:8
相关论文
共 24 条
[11]   REGGE CALCULUS AND ASHTEKAR VARIABLES [J].
IMMIRZI, G .
CLASSICAL AND QUANTUM GRAVITY, 1994, 11 (08) :1971-1979
[12]  
JOSE A, 1996, CLASSICAL QUANT GRAV, V13, P2617
[13]  
LEWANDOSKI J, GRQC9602035
[14]   VOLUME OPERATOR IN DISCRETIZED QUANTUM-GRAVITY [J].
LOLL, R .
PHYSICAL REVIEW LETTERS, 1995, 75 (17) :3048-3051
[15]   NONPERTURBATIVE SOLUTIONS FOR LATTICE QUANTUM-GRAVITY [J].
LOLL, R .
NUCLEAR PHYSICS B, 1995, 444 (03) :619-639
[16]  
LOLL R, GRQC9602041
[17]  
REGGE T, 1962, IL NUOVO CIMENTO, V19, P558
[18]   A LATTICE APPROACH TO SPINORIAL QUANTUM-GRAVITY [J].
RENTELN, P ;
SMOLIN, L .
CLASSICAL AND QUANTUM GRAVITY, 1989, 6 (03) :275-294
[19]  
RICHARD P, 1993, CLASSICAL QUANT GRAV, V10, P483
[20]   KNOT-THEORY AND QUANTUM-GRAVITY [J].
ROVELLI, C ;
SMOLIN, L .
PHYSICAL REVIEW LETTERS, 1988, 61 (10) :1155-1158