High dimensional semiparametric latent graphical model for mixed data

被引:71
作者
Fan, Jianqing [1 ]
Liu, Han [1 ]
Ning, Yang [1 ]
Zou, Hui [2 ]
机构
[1] Princeton Univ, Dept Operat Res & Financial Engn, Princeton, NJ 08544 USA
[2] Univ Minnesota, Minneapolis, MN USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
Discrete data; Gaussian copula; Latent variable; Mixed data; Non-paranormal; Rank-based statistic; NONCONCAVE PENALIZED LIKELIHOOD; VARIABLE SELECTION; MATRIX ESTIMATION; ARABIDOPSIS-THALIANA; GENE NETWORK; SPARSE; MINIMIZATION; REGRESSION; PATHWAY; LASSO;
D O I
10.1111/rssb.12168
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose a semiparametric latent Gaussian copula model for modelling mixed multivariate data, which contain a combination of both continuous and binary variables. The model assumes that the observed binary variables are obtained by dichotomizing latent variables that satisfy the Gaussian copula distribution. The goal is to infer the conditional independence relationship between the latent random variables, based on the observed mixed data. Our work has two main contributions: we propose a unified rank-based approach to estimate the correlation matrix of latent variables; we establish the concentration inequality of the proposed rank-based estimator. Consequently, our methods achieve the same rates of convergence for precision matrix estimation and graph recovery, as if the latent variables were observed. The methods proposed are numerically assessed through extensive simulation studies, and real data analysis.
引用
收藏
页码:405 / 421
页数:17
相关论文
共 55 条
  • [1] [Anonymous], 1899, Philosophical Transactions of the Royal Society of London, Series A
  • [2] Banerjee O, 2008, J MACH LEARN RES, V9, P485
  • [3] A Constrained l1 Minimization Approach to Sparse Precision Matrix Estimation
    Cai, Tony
    Liu, Weidong
    Luo, Xi
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2011, 106 (494) : 594 - 607
  • [4] LATENT VARIABLE GRAPHICAL MODEL SELECTION VIA CONVEX OPTIMIZATION
    Chandrasekaran, Venkat
    Parrilo, Pablo A.
    Willsky, Alan S.
    [J]. ANNALS OF STATISTICS, 2012, 40 (04) : 1935 - 1967
  • [5] Selection and estimation for mixed graphical models
    Chen, Shizhe
    Witten, Daniela M.
    Shojaie, Ali
    [J]. BIOMETRIKA, 2015, 102 (01) : 47 - 64
  • [6] Cheng J., 2013, ARXIV13042810 U MICH
  • [7] First-order methods for sparse covariance selection
    D'Aspremont, Alexandre
    Banerjee, Onureena
    El Ghaoui, Laurent
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2008, 30 (01) : 56 - 66
  • [8] STRONG ORACLE OPTIMALITY OF FOLDED CONCAVE PENALIZED ESTIMATION
    Fan, Jianqing
    Xue, Lingzhou
    Zou, Hui
    [J]. ANNALS OF STATISTICS, 2014, 42 (03) : 819 - 849
  • [9] NETWORK EXPLORATION VIA THE ADAPTIVE LASSO AND SCAD PENALTIES
    Fan, Jianqing
    Feng, Yang
    Wu, Yichao
    [J]. ANNALS OF APPLIED STATISTICS, 2009, 3 (02) : 521 - 541
  • [10] Variable selection via nonconcave penalized likelihood and its oracle properties
    Fan, JQ
    Li, RZ
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2001, 96 (456) : 1348 - 1360