High dimensional semiparametric latent graphical model for mixed data

被引:73
作者
Fan, Jianqing [1 ]
Liu, Han [1 ]
Ning, Yang [1 ]
Zou, Hui [2 ]
机构
[1] Princeton Univ, Dept Operat Res & Financial Engn, Princeton, NJ 08544 USA
[2] Univ Minnesota, Minneapolis, MN USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
Discrete data; Gaussian copula; Latent variable; Mixed data; Non-paranormal; Rank-based statistic; NONCONCAVE PENALIZED LIKELIHOOD; VARIABLE SELECTION; MATRIX ESTIMATION; ARABIDOPSIS-THALIANA; GENE NETWORK; SPARSE; MINIMIZATION; REGRESSION; PATHWAY; LASSO;
D O I
10.1111/rssb.12168
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose a semiparametric latent Gaussian copula model for modelling mixed multivariate data, which contain a combination of both continuous and binary variables. The model assumes that the observed binary variables are obtained by dichotomizing latent variables that satisfy the Gaussian copula distribution. The goal is to infer the conditional independence relationship between the latent random variables, based on the observed mixed data. Our work has two main contributions: we propose a unified rank-based approach to estimate the correlation matrix of latent variables; we establish the concentration inequality of the proposed rank-based estimator. Consequently, our methods achieve the same rates of convergence for precision matrix estimation and graph recovery, as if the latent variables were observed. The methods proposed are numerically assessed through extensive simulation studies, and real data analysis.
引用
收藏
页码:405 / 421
页数:17
相关论文
共 55 条
[1]  
[Anonymous], 1899, Philosophical Transactions of the Royal Society of London, Series A
[2]  
Banerjee O, 2008, J MACH LEARN RES, V9, P485
[3]   A Constrained l1 Minimization Approach to Sparse Precision Matrix Estimation [J].
Cai, Tony ;
Liu, Weidong ;
Luo, Xi .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2011, 106 (494) :594-607
[4]  
Chandrasekaran V, 2012, ANN STAT, V40, P1935, DOI 10.1214/11-AOS949
[5]   Selection and estimation for mixed graphical models [J].
Chen, Shizhe ;
Witten, Daniela M. ;
Shojaie, Ali .
BIOMETRIKA, 2015, 102 (01) :47-64
[6]  
Cheng J., 2013, ARXIV13042810 U MICH
[7]   First-order methods for sparse covariance selection [J].
D'Aspremont, Alexandre ;
Banerjee, Onureena ;
El Ghaoui, Laurent .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2008, 30 (01) :56-66
[8]   STRONG ORACLE OPTIMALITY OF FOLDED CONCAVE PENALIZED ESTIMATION [J].
Fan, Jianqing ;
Xue, Lingzhou ;
Zou, Hui .
ANNALS OF STATISTICS, 2014, 42 (03) :819-849
[9]   NETWORK EXPLORATION VIA THE ADAPTIVE LASSO AND SCAD PENALTIES [J].
Fan, Jianqing ;
Feng, Yang ;
Wu, Yichao .
ANNALS OF APPLIED STATISTICS, 2009, 3 (02) :521-541
[10]   Variable selection via nonconcave penalized likelihood and its oracle properties [J].
Fan, JQ ;
Li, RZ .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2001, 96 (456) :1348-1360