Bifilar-Pendulum-Assisted Multilayer-Structured Triboelectric Nanogenerators for Wave Energy Harvesting

被引:133
作者
Zhang, Chuguo [1 ,2 ]
Zhou, Linglin [1 ,2 ]
Cheng, Ping [1 ]
Liu, Di [1 ,2 ]
Zhang, Chunlei [1 ,2 ]
Li, Xinyuan [1 ,2 ]
Li, Shaoxin [1 ,2 ]
Wang, Jie [1 ,2 ,3 ]
Wang, Zhong Lin [1 ,2 ,4 ]
机构
[1] Chinese Acad Sci, Beijing Inst Nanoenergy & Nanosyst, Beijing 100083, Peoples R China
[2] Univ Chinese Acad Sci, Coll Nanosci & Technol, Beijing 100049, Peoples R China
[3] Guangxi Univ, Sch Phys Sci & Technol, Ctr Nanoenergy Res, Nanning 530004, Peoples R China
[4] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
bifilar-pendulum; renewable energy; triboelectric nanogenerators; vessels; wave energy harvesting; CHARGE-DENSITY; SURFACE-CHARGE; POWER-SYSTEM; PERFORMANCE; EXTRACTION; NETWORK;
D O I
10.1002/aenm.202003616
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Triboelectric nanogenerators (TENGs) have been introduced as a new cost-effective technology for harvesting renewable wave energy for their unmatchable performance in low frequency (<5 Hz). Here, bifilar-pendulum-assisted multilayer-structured triboelectric nanogenerator (BM-TENG) modules incorporated into a vessel for wave energy harvesting are reported, which have a high output performance and adaptive capacity in actual marine environment. Compared with previous research work on wave energy collection by TENG, the designed BM-TENG, which is optimized by the structure and material, presents a milestone power density of 200 W m(-3) and this performance is an improvement of 1-2 orders of magnitude. More importantly, by using a vessel as a platform, TENG can be integrated into it to eliminate the impact of the marine environment and enable convenient maintenance, easy connection, and long-term stable operation of TENG. The findings provide not only a new design methodology for TENG but also a feasible method to harvest renewable energy efficiently.
引用
收藏
页数:10
相关论文
共 49 条
[1]   An ultrasensitive flexible pressure sensor for multimodal wearable electronic skins based on large-scale polystyrene ball@reduced graphene-oxide core-shell nanoparticles [J].
Ai, Yuanfei ;
Hsu, Ting Heng ;
Wu, Ding Chou ;
Lee, Ling ;
Chen, Jyun-Hong ;
Chen, Yu-Ze ;
Wu, Shu-Chi ;
Wu, Cuo ;
Wang, Zhiming M. ;
Chueh, Yu-Lun .
JOURNAL OF MATERIALS CHEMISTRY C, 2018, 6 (20) :5514-5520
[2]  
Babarit A, 2017, Ocean wave energy conversion: Resource, technologies and performance
[3]   The Mosaic of Surface Charge in Contact Electrification [J].
Baytekin, H. T. ;
Patashinski, A. Z. ;
Branicki, M. ;
Baytekin, B. ;
Soh, S. ;
Grzybowski, B. A. .
SCIENCE, 2011, 333 (6040) :308-312
[4]  
Chen J, 2016, NAT ENERGY, V1, DOI [10.1038/nenergy.2016.138, 10.1038/NENERGY.2016.138]
[5]   A self-improving triboelectric nanogenerator with improved charge density and increased charge accumulation speed [J].
Cheng, Li ;
Xu, Qi ;
Zheng, Youbin ;
Jia, Xiaofeng ;
Qin, Yong .
NATURE COMMUNICATIONS, 2018, 9
[6]   Largely enhanced triboelectric nanogenerator for efficient harvesting of water wave energy by soft contacted structure [J].
Cheng, Ping ;
Guo, Hengyu ;
Wen, Zhen ;
Zhang, Chunlei ;
Yin, Xing ;
Li, Xinyuan ;
Liu, Di ;
Song, Weixing ;
Sun, Xuhui ;
Wang, Jie ;
Wang, Zhong Lin .
NANO ENERGY, 2019, 57 :432-439
[7]  
Cherukupally P, 2020, NAT SUSTAIN, V3, P136, DOI 10.1038/s41893-019-0446-4
[8]   Flexible triboelectric generator! [J].
Fan, Feng-Ru ;
Tian, Zhong-Qun ;
Wang, Zhong Lin .
NANO ENERGY, 2012, 1 (02) :328-334
[9]  
He, 2020, ENERG ENVIRON SCI, V13, P1300
[10]   Spring-assisted triboelectric nanogenerator for efficiently harvesting water wave energy [J].
Jiang, Tao ;
Yao, Yanyan ;
Xu, Liang ;
Zhang, Limin ;
Xiao, Tianxiao ;
Wang, Zhong Lin .
NANO ENERGY, 2017, 31 :560-567