Explicit bound to distinguish two L-functions

被引:1
作者
Euvrard, Charlotte [1 ]
机构
[1] Univ Bourgogne Franche Comte, CNRS UMR 6623, Lab Math Besancon, 16 Route Gray, F-25030 Besancon, France
来源
JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX | 2017年 / 29卷 / 01期
关键词
SELBERG CLASS;
D O I
10.5802/jtnb.969
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain an explicit bound that gives a sufficient condition to distinguish two L-functions from their first coefficients. We will see the particular cases of Artin L-functions.
引用
收藏
页码:51 / 83
页数:33
相关论文
共 11 条
  • [1] Akbary A., 2006, LECT CLASSICAL ANAL
  • [2] CHOW S., DISTINGUISHING NEWFO
  • [3] Cohen H., 2007, Analytic and Modern Tools, Graduate Texts in Mathematics, V240
  • [4] Couveignes J-M., 2011, COMPUTATIONAL ASPECT
  • [5] Dokchitser T., COMPUTEL COMPUTING S
  • [6] Iwaniec I., 2004, ANAL NUMBER THEORY
  • [7] On the structure of the Selberg class, I:: 0 ≤ d ≤ 1
    Kaczorowski, J
    Perelli, A
    [J]. ACTA MATHEMATICA, 1999, 182 (02) : 207 - 241
  • [8] Rankin-Selberg L-functions in the level aspect
    Kowalski, E
    Michel, P
    Vanderkam, J
    [J]. DUKE MATHEMATICAL JOURNAL, 2002, 114 (01) : 123 - 191
  • [9] Neukirch J., 1999, Algebraic Number Theory, DOI DOI 10.1007/978-3-662-03983-0
  • [10] On asymptotic behavior of generalized Li coefficients in the Selberg class
    Odzak, Almasa
    Smajlovic, Lejla
    [J]. JOURNAL OF NUMBER THEORY, 2011, 131 (03) : 519 - 535