Enhanced thermal conductivity of phase change nanocomposite in solid and liquid state with various carbon nano inclusions

被引:60
作者
Harish, Sivasankaran [1 ]
Orejon, Daniel [1 ,2 ]
Takata, Yasuyuki [1 ,2 ]
Kohno, Masamichi [1 ,2 ]
机构
[1] Kyushu Univ, Int Inst Carbon Neutral Energy Res WPI I2CNER, Nishi Ku, 744 Motooka, Fukuoka 8190395, Japan
[2] Kyushu Univ, Dept Mech Engn, Thermofluid Phys Lab, Nishi Ku, 744 Motooka, Fukuoka 8190395, Japan
关键词
Phase change material; Thermal conductivity; Carbon nanohorns; Carbon nanotube; Graphene; INTERFACIAL HEAT-FLOW; ENERGY-STORAGE; GRAPHENE; COMPOSITE; NANOFILLERS; NANOTUBES; TRANSPORT; PARAFFIN; SCISSION;
D O I
10.1016/j.applthermaleng.2016.10.109
中图分类号
O414.1 [热力学];
学科分类号
摘要
We report contrasting enhancement in the solid state and liquid state thermal conductivity of phase change nanocomposite seeded with various carbon nano inclusions. Phase change nanocomposites were prepared using n-Dodecanoic acid as the host matrix. Single -walled carbon nanohorns, multi walled carbon nanotubes and few -layer graphene nanosheets were considered as the nano inclusions. Thermal conductivity measurements were carried out using a custom built transient hotwire technique. The thermal conductivity enhancement significantly depends on the shape and aspect ratio of the nano inclusions. Maximum thermal conductivity enhancement was obtained in the presence of graphene nanosheets as the nanofiller candidate followed by carbon nanotubes and carbon nanohorns. The thermal conductivity enhancement was significantly higher in the solid state than the liquid state of the material for all the nano composites. Thermal conductivity enhancement results were compared with the effective medium theory calculations and Yamada-Ota model calculations considering the role of interfacial thermal resistance between the nanomaterial and the surrounding host matrix. The model calculations show that that the interfacial thermal resistance significantly limits the thermal conductivity enhancement in the liquid state compared to the solid state. The model calculations also show that interfacial thermal resistance is an order of magnitude higher at the solid -liquid interface compared to that of solid-solid interface which leads to a contrasting thermal conductivity enhancement in liquid and solid state of the nanocomposites. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1240 / 1246
页数:7
相关论文
共 46 条
[1]   Tunable Thermal Transport in Phase Change Materials Using Inverse Micellar Templating and Nanofillers [J].
Angayarkanni, S. A. ;
Philip, John .
JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (25) :13972-13980
[2]  
[Anonymous], 1990, CONDUCTION HEAT SOLI
[3]   Thermal conductivity enhancement of paraffins by increasing the alignment of molecules through adding CNT/graphene [J].
Babaei, Hasan ;
Keblinski, Pawel ;
Khodadadi, J. M. .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2013, 58 (1-2) :209-216
[4]  
Balandin AA, 2011, NAT MATER, V10, P569, DOI [10.1038/nmat3064, 10.1038/NMAT3064]
[5]   A benchmark study on the thermal conductivity of nanofluids [J].
Buongiorno, Jacopo ;
Venerus, David C. ;
Prabhat, Naveen ;
McKrell, Thomas ;
Townsend, Jessica ;
Christianson, Rebecca ;
Tolmachev, Yuriy V. ;
Keblinski, Pawel ;
Hu, Lin-wen ;
Alvarado, Jorge L. ;
Bang, In Cheol ;
Bishnoi, Sandra W. ;
Bonetti, Marco ;
Botz, Frank ;
Cecere, Anselmo ;
Chang, Yun ;
Chen, Gany ;
Chen, Haisheng ;
Chung, Sung Jae ;
Chyu, Minking K. ;
Das, Sarit K. ;
Di Paola, Roberto ;
Ding, Yulong ;
Dubois, Frank ;
Dzido, Grzegorz ;
Eapen, Jacob ;
Escher, Werner ;
Funfschilling, Denis ;
Galand, Quentin ;
Gao, Jinwei ;
Gharagozloo, Patricia E. ;
Goodson, Kenneth E. ;
Gutierrez, Jorge Gustavo ;
Hong, Haiping ;
Horton, Mark ;
Hwang, Kyo Sik ;
Iorio, Carlo S. ;
Jang, Seok Pil ;
Jarzebski, Andrzej B. ;
Jiang, Yiran ;
Jin, Liwen ;
Kabelac, Stephan ;
Kamath, Aravind ;
Kedzierski, Mark A. ;
Kieng, Lim Geok ;
Kim, Chongyoup ;
Kim, Ji-Hyun ;
Kim, Seokwon ;
Lee, Seung Hyun ;
Leong, Kai Choong .
JOURNAL OF APPLIED PHYSICS, 2009, 106 (09)
[6]   Thermal boundary resistance between single-walled carbon nanotubes and surrounding matrices [J].
Carlborg, Carl Fredrik ;
Shiomi, Junichiro ;
Maruyama, Shigeo .
PHYSICAL REVIEW B, 2008, 78 (20)
[7]   Effect of carbon nanofiber additives on thermal behavior of phase change materials [J].
Elgafy, A ;
Lafdi, K .
CARBON, 2005, 43 (15) :3067-3074
[8]   Effects of various carbon nanofillers on the thermal conductivity and energy storage properties of paraffin-based nanocomposite phase change materials [J].
Fan, Li-Wu ;
Fang, Xin ;
Wang, Xiao ;
Zeng, Yi ;
Xiao, Yu-Qi ;
Yu, Zi-Tao ;
Xu, Xu ;
Hu, Ya-Cai ;
Cen, Ke-Fa .
APPLIED ENERGY, 2013, 110 :163-172
[9]   Increased Thermal Conductivity of Eicosane-Based Composite Phase Change Materials in the Presence of Graphene Nanoplatelets [J].
Fang, Xin ;
Fan, Li-Wu ;
Ding, Qing ;
Wang, Xiao ;
Yao, Xiao-Li ;
Hou, Jian-Feng ;
Yu, Zi-Tao ;
Cheng, Guan-Hua ;
Hu, Ya-Cai ;
Cen, Ke-Fa .
ENERGY & FUELS, 2013, 27 (07) :4041-4047
[10]   Thermal conductivity enhancement of lauric acid phase change nanocomposite with graphene nanoplatelets [J].
Harish, Sivasankaran ;
Orejon, Daniel ;
Takata, Yasuyuki ;
Kohno, Masamichi .
APPLIED THERMAL ENGINEERING, 2015, 80 :205-211