Venttsel' problems in fractal domains

被引:24
作者
Lancia, Maria Rosaria [1 ]
Vernole, Paola [2 ]
机构
[1] Univ Rome, Dipartimento Sci Base & Applicate Ingn, Via A Scarpa 16, I-00161 Rome, Italy
[2] Univ Roma La Sapienza, Dipartimento Matemat, I-00185 Rome, Italy
关键词
Asymptotic behaviour; Venttsel' problems; Energy forms; Fractal domains; Trace theorems; Semigroups; Varying Hilbert spaces; BOUNDARY-CONDITIONS; APPROXIMATION; TRANSMISSION; CONVERGENCE; SPACES; LAPLACIAN;
D O I
10.1007/s00028-014-0233-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A nonsteady Venttsel' problem in a fractal domain Omega or in the corresponding prefractal domain Omega (h) is studied. Existence, uniqueness, and regularity results for the strict solution, in both cases, are established as well as convergence results of the solutions of the approximating problems in varying Hilbert spaces.
引用
收藏
页码:681 / 712
页数:32
相关论文
共 62 条
  • [11] Berger G, 2000, MATH NACHR, V220, P11, DOI 10.1002/1522-2616(200012)220:1<11::AID-MANA11>3.3.CO
  • [12] 2-H
  • [13] Brezzi F, 1987, FINITE ELEMENT HDB
  • [14] Buffa A, 2001, MATH METHOD APPL SCI, V24, P9, DOI 10.1002/1099-1476(20010110)24:1<9::AID-MMA191>3.0.CO
  • [15] 2-2
  • [16] DIFFUSION IN A FRACTURED MEDIUM
    CANNON, JR
    MEYER, GH
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 1971, 20 (03) : 434 - &
  • [17] Asymptotics for mixed Dirichlet-Robin problems in irregular domains
    Capitanelli, Raffaela
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 362 (02) : 450 - 459
  • [18] Cefalo M, 2013, DIFFER INTEGRAL EQU, V26, P1027
  • [19] Dautray R., 1988, MATHEMATICAL ANALYSI, V5
  • [20] Falconer K.J., 1990, The Geometry of Fractal Sets: Mathematical Foundations and Applications