Venttsel' problems in fractal domains

被引:24
作者
Lancia, Maria Rosaria [1 ]
Vernole, Paola [2 ]
机构
[1] Univ Rome, Dipartimento Sci Base & Applicate Ingn, Via A Scarpa 16, I-00161 Rome, Italy
[2] Univ Roma La Sapienza, Dipartimento Matemat, I-00185 Rome, Italy
关键词
Asymptotic behaviour; Venttsel' problems; Energy forms; Fractal domains; Trace theorems; Semigroups; Varying Hilbert spaces; BOUNDARY-CONDITIONS; APPROXIMATION; TRANSMISSION; CONVERGENCE; SPACES; LAPLACIAN;
D O I
10.1007/s00028-014-0233-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A nonsteady Venttsel' problem in a fractal domain Omega or in the corresponding prefractal domain Omega (h) is studied. Existence, uniqueness, and regularity results for the strict solution, in both cases, are established as well as convergence results of the solutions of the approximating problems in varying Hilbert spaces.
引用
收藏
页码:681 / 712
页数:32
相关论文
共 62 条
  • [1] Effective boundary conditions for laminar flows over periodic rough boundaries
    Achdou, Y
    Pironneau, O
    Valentin, F
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 1998, 147 (01) : 187 - 218
  • [2] Achdou Y, 2007, ASYMPTOTIC ANAL, V53, P61
  • [3] Adams DR., 1966, FUNCTION SPACES POTE
  • [4] [Anonymous], 1984, Applicable mathematics series
  • [5] [Anonymous], 1994, DEGRUYTER STUDIES MA
  • [6] [Anonymous], 1997, FRACTALS AND SPECTRA
  • [7] Apushkinskaya D.E., 2000, J MATH SCI, V101, P2861, DOI DOI 10.1007/BF02672175
  • [8] The Laplacian with Wentzell-Robin boundary conditions on spaces of continuous functions
    Arendt, W
    Metafune, G
    Pallara, D
    Romanelli, S
    [J]. SEMIGROUP FORUM, 2003, 67 (02) : 247 - 261
  • [9] Baiocchi C., 1984, VARIATIONAL QUASIVAR
  • [10] BARBU V., 1998, MATH APPL, V441