Lithium-ion (de)intercalation mechanism in core-shell layered Li(Ni,Co, Mn)O2 cathode materials

被引:63
作者
Hua, Weibo [1 ,2 ]
Schwarz, Bjoern [2 ]
Azmi, Raheleh [2 ]
Mueller, Marcus [2 ]
Darma, Mariyam Susana Dewi [2 ]
Knapp, Michael [2 ]
Senyshyn, Anatoliy [3 ]
Heere, Michael [2 ,3 ]
Missyul, Alkesandr [4 ]
Simonelli, Laura [4 ]
Binder, Joachim R. [2 ]
Indris, Sylvio [2 ]
Ehrenberg, Helmut [2 ]
机构
[1] Univ Elect Sci & Technol China, State Key Lab Elect Thin Films & Integrated Devic, Chengdu 610054, Peoples R China
[2] Karlsruhe Inst Technol KIT, Inst Appl Mat IAM, Hermann von Helmholtz Pl 1, D-76344 Eggenstein Leopoldshafen, Germany
[3] Tech Univ Munich, Heinz Maier Leibnitz Zentrum, Lichtenbergstr 1, D-85747 Garching, Germany
[4] CELLS ALBA Synchrotron, E-08290 Barcelona, Spain
关键词
Core-shell architecture; Coexisting layered phases; Chemical composition; (de)Lithiation mechanism; ENERGY-STORAGE; BATTERY; TRANSITION; PERFORMANCE; INTERFACE; KINETICS; NI;
D O I
10.1016/j.nanoen.2020.105231
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
LiNixCoyMn1-x-yO(2) (NCM) intercalation compounds with core-shell architecture have been found to be promising cathode candidates for next-generation lithium-ion battery applications. The NCM cathodes' functional properties are dependent on the transition metal relative ratios, making it a challenge to control the real structure of core-shell NCM cathode materials and to understand the synergistic effect of core and shell during the electrochemical cycling. Herein, a universal and facile synthetic strategy is developed to synthesize the NCM material composed of an inner Ni-rich core and a Mn-rich shell on a secondary particle level. Both the Ni-rich particle core and the Mn-rich outer surface possess a layered alpha-NaFeO2-type structure with the same space group (R (3) over barm). The in situ synchrotron-based X-ray diffraction and absorption spectroscopy results demonstrate that the two layered phases do not participate in the electrochemical reaction simultaneously during the first cycle between 2.7 and 4.3 V, while they exhibit a similar reversible (de)lithiation mechanism in the following cycles. These findings provide a new perspective for rational design of layered Ni-based cathode materials with high energy and long cycling life with particular two phase electrochemical characteristics.
引用
收藏
页数:10
相关论文
共 41 条
[1]   Surface analytical characterization of LiNi0.8-yMnyCo0.2O2 (0 ≤ y ≤ 0.4) compounds for lithium-ion battery electrodes [J].
Azmi, R. ;
Masoumi, M. ;
Ehrenberg, H. ;
Trouillet, V. ;
Bruns, M. .
SURFACE AND INTERFACE ANALYSIS, 2018, 50 (11) :1132-1137
[2]   Surface analytical approaches to reliably characterize lithium ion battery electrodes [J].
Azmi, R. ;
Trouillet, V. ;
Strafela, M. ;
Ulrich, S. ;
Ehrenberg, H. ;
Bruns, M. .
SURFACE AND INTERFACE ANALYSIS, 2018, 50 (01) :43-51
[3]   Quantitative performance analysis of graphite-LiFePO4 battery working at low temperature [J].
Bae, Seongjun ;
Song, Hyeon Don ;
Nam, Inho ;
Kim, Gil-Pyo ;
Lee, Jong Min ;
Yi, Jongheop .
CHEMICAL ENGINEERING SCIENCE, 2014, 118 :74-82
[4]   Charge transfer kinetics at the solid-solid interface in porous electrodes [J].
Bai, Peng ;
Bazant, Martin Z. .
NATURE COMMUNICATIONS, 2014, 5
[5]   Oxyvanite V3O5: A new intercalation-type anode for lithium-ion battery [J].
Chen, Dong ;
Tan, Huiteng ;
Rui, Xianhong ;
Zhang, Qi ;
Feng, Yuezhan ;
Geng, Hongbo ;
Li, Chengchao ;
Huang, Shaoming ;
Yu, Yan .
INFOMAT, 2019, 1 (02) :251-259
[6]   Chemical, Structural, and Electronic Aspects of Formation and Degradation Behavior on Different Length Scales of Ni-Rich NCM and Li-Rich HE-NCM Cathode Materials in Li-Ion Batteries [J].
de Biasi, Lea ;
Schwarz, Bjoern ;
Brezesinski, Torsten ;
Hartmann, Pascal ;
Janek, Juergen ;
Ehrenberg, Helmut .
ADVANCED MATERIALS, 2019, 31 (26)
[7]   In Situ X-ray Diffraction and X-ray Absorption Spectroscopic Studies of a Lithium-Rich Layered Positive Electrode Material: Comparison of Composite and Core-Shell Structures [J].
Ehi-Eromosele, Cyril Osereme ;
Indris, Sylvio ;
Bramnik, Natalia N. ;
Sarapulova, Angelina ;
Trouillet, Vanessa ;
Pfaffman, Lukas ;
Melinte, Georgian ;
Mangold, Stefan ;
Darma, Mariyam Susana Dewi ;
Knapp, Michael ;
Ehrenberg, Helmut .
ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (12) :13852-13868
[8]   The Li-Ion Rechargeable Battery: A Perspective [J].
Goodenough, John B. ;
Park, Kyu-Sung .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (04) :1167-1176
[9]   The Lithium/Air Battery: Still an Emerging System or a Practical Reality? [J].
Grande, Lorenzo ;
Paillard, Elie ;
Hassoun, Jusef ;
Park, Jin-Bum ;
Lee, Yung-Jung ;
Sun, Yang-Kook ;
Passerini, Stefano ;
Scrosati, Bruno .
ADVANCED MATERIALS, 2015, 27 (05) :784-800
[10]   Uncovering a facile large-scale synthesis of LiNi1/3Co1/3Mn1/3O2 nanoflowers for high power lithium-ion batteries [J].
Hua, Wei-Bo ;
Guo, Xiao-Dong ;
Zheng, Zhuo ;
Wang, Yan-Jie ;
Zhong, Ben-He ;
Fang, Baizeng ;
Wang, Jia-Zhao ;
Chou, Shu-Lei ;
Liu, Heng .
JOURNAL OF POWER SOURCES, 2015, 275 :200-206