The contact hyperfine interaction and the integer and fractional quantum Hall effects

被引:0
作者
Maude, Duncan K. [1 ]
Piot, Benjamin A. [2 ]
Desrat, Wilfried [3 ]
机构
[1] CNRS UJF INSA UPS, Lab Natl Champs Magnet Intenses, 143 Ave Rangueil, F-31400 Toulouse, France
[2] CNRS UJF INSA UPS, Lab Natl Champs Magnet Intenses, F-38042 Grenoble, France
[3] Univ Montpellier 2, CNRS, Lab Charles Coulomb, F-34095 Montpellier, France
来源
2014 11TH INTERNATIONAL WORKSHOP ON LOW TEMPERATURE ELECTRONICS (WOLTE) | 2014年
关键词
Quantum Hall effect; contact hyperfine interaction; resistively detected NMR; LANDAU-LEVEL; EXCITATIONS; LIMIT;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The single particle and many body physics behind the the integer and fractional quantum Hall effects is reviewed. We explain how the composite Fermion picture of Jain describes the fractional quantum Hall effect in terms of an integer quantum Hall effect of non interacting composite fermions and provides an intuitive understanding of spin reversed fractions and competing ground states. The contact hyperfine interaction between the nuclear and electronic spins can be used to probe the electronic spin polarization of the quantum Hall system via the Knight shift of the resistively detected NMR. Finally, we describe how pulsed resistively detected NMR on gated samples can be used to probe quantum Hall states (filling factors) which have zero resistance or are not sensitive to the electronic Zeeman energy.
引用
收藏
页码:49 / 52
页数:4
相关论文
共 50 条
[31]   Skyrmion effects in integer quantum Hall systems in the presence of a single valence hole [J].
Asano, K .
MICROELECTRONIC ENGINEERING, 2002, 63 (1-3) :75-80
[32]   Equilibration of integer quantum Hall edge states [J].
Kovrizhin, D. L. ;
Chalker, J. T. .
PHYSICAL REVIEW B, 2011, 84 (08)
[33]   The microscopic picture of the integer quantum Hall regime [J].
Romer, Rudolf A. ;
Oswald, Josef .
ANNALS OF PHYSICS, 2021, 435
[34]   Integer quantum hall effect at finite temperature [J].
Toyoda, T. ;
Kaneko, K. ;
Suwa, F. ;
Mitani, T. ;
Ito, K. ;
Koizumi, H. .
FLOW DYNAMICS, 2006, 832 :524-+
[35]   Integer quantum Hall effect and related phenomena [J].
Dolgopolov, V. T. .
PHYSICS-USPEKHI, 2014, 57 (02) :105-127
[36]   A semiclassical approach to the integer quantum Hall problem [J].
Hidalgo, MA .
MICROELECTRONIC ENGINEERING, 1998, 43-4 :453-458
[37]   Theory of the integer quantum Hall effect in graphene [J].
Toyoda, Tadashi ;
Zhang, Chao .
PHYSICS LETTERS A, 2012, 376 (04) :616-619
[38]   Charge Fractionalization in the Integer Quantum Hall Effect [J].
Inoue, Hiroyuki ;
Grivnin, Anna ;
Ofek, Nissim ;
Neder, Izhar ;
Heiblum, Moty ;
Umansky, Vladimir ;
Mahalu, Diana .
PHYSICAL REVIEW LETTERS, 2014, 112 (16)
[39]   Copenhagen's single system premise prevents a unified view of integer and fractional quantum hall effect [J].
Post, EJ .
ANNALEN DER PHYSIK, 1999, 8 (05) :405-423
[40]   Model for Dissipative Conductance in Fractional Quantum Hall States [J].
d'Ambrumenil, N. ;
Halperin, B. I. ;
Morf, R. H. .
PHYSICAL REVIEW LETTERS, 2011, 106 (12)