Phase Transition Models in Atmospheric Dynamics

被引:16
作者
Bousquet, Arthur [1 ]
Zelati, Michele Coti [1 ]
Temam, Roger [1 ]
机构
[1] Indiana Univ, Inst Sci Comp & Appl Math, Bloomington, IN 47405 USA
基金
美国国家科学基金会;
关键词
Atmospheric equations; specific humidity; saturation; phase-change; variational inequalities; differential inclusions; finite volumes; upwind discretization methods; PRIMITIVE EQUATIONS;
D O I
10.1007/s00032-014-0213-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
From both the theoretical and numerical viewpoints, we study a system of differential inclusions describing the evolution of the temperature and the specific humidity distributions in a system of moist air. We allow the so-called saturation concentration parameter to depend on the temperature, and thus we consider more general and interesting phase-change effects than the ones addressed in [2].
引用
收藏
页码:99 / 128
页数:30
相关论文
共 25 条
[11]  
Duvaut G., 1976, INEQUALITIES MECH PH, Vfirst, DOI [10.1007/978-3-642-66165-5, DOI 10.1007/978-3-642-66165-5]
[12]  
Ekeland Ivar., 1999, SOC IND APPL MATH SI
[13]  
Ewald BD, 2001, DISCRET CONTIN DYN S, V7, P343
[14]   A cell-centred finite-volume approximation for anisotropic diffusion operators on unstructured meshes in any space dimension [J].
Eymard, R ;
Gallouët, T ;
Herbin, R .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2006, 26 (02) :326-353
[15]  
Grisvard P., 1985, Elliptic Problems in Nonsmooth Domains, V24
[16]  
Halitner G.J., 1980, NUMERICAL PREDICTION, V2nd
[17]  
Haltiner G.J., 1971, Numerical Weather Prediction
[18]  
Kinderlehrer D., 1980, An introduction to variational inequalities and their applications, V88
[19]  
LeVeque RJ, 2004, Finite volume methods for hyperbolic problems
[20]   NEW FORMULATIONS OF THE PRIMITIVE EQUATIONS OF ATMOSPHERE AND APPLICATIONS [J].
LIONS, JL ;
TEMAM, R ;
WANG, SH .
NONLINEARITY, 1992, 5 (02) :237-288