Fredholm and invertibility theory for a special class of Toeplitz plus Hankel operators

被引:14
作者
Basor, Estelle L. [1 ]
Ehrhardt, Torsten [2 ]
机构
[1] Amer Inst Math, Palo Alto, CA 94306 USA
[2] Univ Calif Santa Cruz, Dept Math, Santa Cruz, CA 95064 USA
基金
美国国家科学基金会;
关键词
Toeplitz operator; Hankel operator; Toeplitz plus Hankel operator; SINE KERNEL; ASYMPTOTICS; DETERMINANT; FACTORIZATION;
D O I
10.4171/JST/42
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We develop a complete Fredholm and invertibility theory for Toeplitz+ Hankel operators T(a) + H(b) on the Hardy space H-p (T), < p < infinity, with piecewise continuous functions a; b defined on the unit circle which are subject to the condition a9t)a(t(-1)) = In particular, in the case of Fredholmness, formulas for the defect numbers are established. The results are applied to several important examples.
引用
收藏
页码:171 / 214
页数:44
相关论文
共 50 条
[31]   Compact Product of Hankel and Toeplitz Operators on the Hardy Space [J].
Chu, Cheng .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2015, 64 (04) :973-982
[32]   Some product problem of Toeplitz and Hankel operators on the bidisk [J].
Chen, Yong ;
Liu, Ya ;
Shen, Jiayun ;
Wu, Qi .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2025, 551 (01)
[33]   Sums of Products of Toeplitz and Hankel Operators on the Dirichlet Space [J].
Lee, Young Joo ;
Zhu, Kehe .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2011, 71 (02) :275-302
[34]   Special Toeplitz operators on a class of bounded Hartogs domains [J].
Yanyan Tang ;
Zhenhan Tu .
Archiv der Mathematik, 2020, 114 :661-675
[35]   Special Toeplitz operators on a class of bounded Hartogs domains [J].
Tang, Yanyan ;
Tu, Zhenhan .
ARCHIV DER MATHEMATIK, 2020, 148 (06) :755-761
[36]   FINITE RANK COMMUTATOR OF TOEPLITZ OPERATORS OR HANKEL OPERATORS [J].
Ding, Xuanhao ;
Zheng, Dechao .
HOUSTON JOURNAL OF MATHEMATICS, 2008, 34 (04) :1099-1119
[37]   Special Toeplitz operators on a class of bounded Hartogs domains [J].
Tang, Yanyan ;
Tu, Zhenhan .
ARCHIV DER MATHEMATIK, 2020, 114 (06) :661-675
[38]   INVERTIBILITY CHARACTERIZATION OF WIENER-HOPF PLUS HANKEL OPERATORS VIA ODD ASYMMETRIC FACTORIZATIONS [J].
Bogveradze, G. ;
Castro, L. P. .
BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2009, 3 (01) :1-18
[39]   Toeplitz operators and Hankel operators on a Bergman space with an exponential weight on the unit ball [J].
Cho, Hong Rae ;
Lee, Han-Wool ;
Park, Soohyun .
ANALYSIS AND MATHEMATICAL PHYSICS, 2024, 14 (04)
[40]   Toeplitz and Hankel operators with L∞,1 symbols on Dirichlet space [J].
Chen, Yong ;
Nguyen Quang Dieu .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 369 (01) :368-376