AN OVERVIEW OF GOODNESS-OF-FIT TESTS FOR THE POISSON DISTRIBUTION

被引:6
|
作者
Mijburgh, P. A. [1 ,2 ]
Visagie, I. J. H. [3 ]
机构
[1] Univ Pretoria, Dept Stat, Pretoria, South Africa
[2] McMaster Univ, Dept Math & Stat, Hamilton, ON, Canada
[3] North West Univ, Sch Math & Stat Sci, Potchefstroom, South Africa
关键词
Goodness-of-fit testing; Poisson distribution; Warp-speed bootstrap; SMOOTH TESTS; INDEX; MODELS; EXPECTATIONS; HOMOGENEITY; STATISTICS; DISPERSION; POWER;
D O I
10.37920/sasj.2020.54.2.6
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The Poisson distribution has a large number of applications and is often used as a model in both a practical and a theoretical setting. As a result, various goodness-of-fit tests have been developed for this distribution. In this paper, we compare the finite sample power performance of ten of these tests against a wide range of alternative distributions for various sample sizes. The alternatives considered include, seemingly for the first time, weighted Poisson distributions. A number of additional tests are of historical importance although their power performance is not competitive against the remaining tests. These tests are discussed, but their powers are not included in the numerical analysis. The Monte Carlo study presented below indicates that the test with the best overall power performance is the test of Meintanis and Nikitin (2008), followed closely by the test of Rayner and Best (1990) (originally studied in Fisher, 1950).
引用
收藏
页码:207 / 230
页数:24
相关论文
共 50 条
  • [1] Goodness-of-fit tests for the bivariate Poisson distribution
    Novoa-Munoz, Francisco
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2021, 50 (07) : 1998 - 2014
  • [2] Recent and classical goodness-of-fit tests for the Poisson distribution
    Gürtler, N
    Henze, N
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2000, 90 (02) : 207 - 225
  • [3] Some goodness-of-fit tests for the Poisson distribution with applications in Biodosimetry
    Puig, Pedro
    Weiss, Christian H.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2020, 144 (144)
  • [4] Goodness-of-fit tests for generalized Poisson distributions
    Batsidis, A.
    Milosevic, B.
    Jimenez-Gamero, M. D.
    STATISTICS, 2025, 59 (02) : 276 - 304
  • [5] Goodness-of-fit tests for the Gompertz distribution
    Lenart, Adam
    Missov, Trifon I.
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2016, 45 (10) : 2920 - 2937
  • [6] On goodness-of-fit tests for the Bell distribution
    Batsidis, Apostolos
    Jimenez-Gamero, Maria Dolores
    Lemonte, Artur J.
    METRIKA, 2020, 83 (03) : 297 - 319
  • [7] On goodness-of-fit tests for the Bell distribution
    Apostolos Batsidis
    María Dolores Jiménez-Gamero
    Artur J. Lemonte
    Metrika, 2020, 83 : 297 - 319
  • [8] Goodness-of-fit tests for Pareto distribution
    Gulati, Sneh
    Shapiro, Samuel
    STATISTICAL MODELS AND METHODS FOR BIOMEDICAL AND TECHNICAL SYSTEMS, 2008, : 259 - 274
  • [9] On the conditional distribution of goodness-of-fit tests
    O'Reilly, F
    Gracia-Medrano, L
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2006, 35 (03) : 541 - 549
  • [10] Tests for the goodness-of-fit of the Laplace distribution
    Chen, Colin
    Communications in Statistics Part B: Simulation and Computation, 2002, 31 (01): : 159 - 174