AnciNet: An Efficient Deep Learning Approach for Feedback Compression of Estimated CSI in Massive MIMO Systems

被引:41
作者
Sun, Yuyao [1 ]
Xu, Wei [1 ,2 ]
Fan, Lisheng [3 ]
Li, Geoffrey Ye [4 ]
Karagiannidis, George K. [5 ]
机构
[1] Southeast Univ, Natl Mobile Commun Res Lab, Nanjing 210096, Peoples R China
[2] Purple Mt Labs, Nanjing 211111, Peoples R China
[3] Guangzhou Univ, Sch Comp Sci, Guangzhou 510006, Peoples R China
[4] Georgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA 30332 USA
[5] Aristotle Univ Thessaloniki, Elect & Comp Engn Dept, Thessaloniki 54124, Greece
关键词
Kernel; Noise measurement; Feature extraction; Artificial neural networks; Noise reduction; Channel estimation; Decoding; Massive MIMO; noisy CSI feedback; neural network; residual learning; CHANNEL ESTIMATION;
D O I
10.1109/LWC.2020.3017753
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Accurate channel state information (CSI) feedback plays a vital role in improving the performance gain of massive multiple-input multiple-output (m-MIMO) systems, where the dilemma is excessive CSI overhead versus limited feedback bandwith. By considering the noisy CSI due to imperfect channel estimation, we propose a novel deep neural network architecture, namely AnciNet, to conduct the CSI feedback with limited bandwidth. AnciNet extracts noise-free features from the noisy CSI samples to achieve effective CSI compression for the feedback. Experimental results verify that the proposed AnciNet approach outperforms the existing techniques under various conditions.
引用
收藏
页码:2192 / 2196
页数:5
相关论文
共 18 条
[1]   Deep Learning-Based Joint Pilot Design and Channel Estimation for Multiuser MIMO Channels [J].
Chun, Chang-Jae ;
Kang, Jae-Mo ;
Kim, Il-Min .
IEEE COMMUNICATIONS LETTERS, 2019, 23 (11) :1999-2003
[2]   Deep Learning-Based Channel Estimation for Massive MIMO Systems [J].
Chun, Chang-Jae ;
Kang, Jae-Mo ;
Kim, Il-Min .
IEEE WIRELESS COMMUNICATIONS LETTERS, 2019, 8 (04) :1228-1231
[3]  
Guo JJ, 2020, IEEE T WIREL COMMUN, V19, P2827, DOI [10.1109/TWC.2020.2968430, 10.1109/TNSE.2020.2997359]
[4]   Noisy Feedback Linear Precoding: A Bayesian Cramer-Rao Bound [J].
Housfater, Alon Shalev ;
Lim, Teng Joon .
2009 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, VOLS 1- 4, 2009, :1689-1693
[5]  
Kuo PH, 2012, IEEE WCNC
[6]   THE COST 2100 MIMO CHANNEL MODEL [J].
Liu, Lingfeng ;
Oestges, Claude ;
Poutanen, Juho ;
Haneda, Katsuyuki ;
Vainikainen, Pertti ;
Quitin, Francois ;
Tufvesson, Fredrik ;
De Doncker, Philippe .
IEEE WIRELESS COMMUNICATIONS, 2012, 19 (06) :92-99
[7]  
Liu P., 2019, KRNET IMAGE DENOISIN
[8]   Exploiting Bi-Directional Channel Reciprocity in Deep Learning for Low Rate Massive MIMO CSI Feedback [J].
Liu, Zhenyu ;
Zhang, Lin ;
Ding, Zhi .
IEEE WIRELESS COMMUNICATIONS LETTERS, 2019, 8 (03) :889-892
[9]   Bit-Level Optimized Neural Network for Multi-Antenna Channel Quantization [J].
Lu, Chao ;
Xu, Wei ;
Jin, Shi ;
Wang, Kezhi .
IEEE WIRELESS COMMUNICATIONS LETTERS, 2020, 9 (01) :87-90
[10]   MIMO Channel Information Feedback Using Deep Recurrent Network [J].
Lu, Chao ;
Xu, Wei ;
Shen, Hong ;
Zhu, Jun ;
Wang, Kezhi .
IEEE COMMUNICATIONS LETTERS, 2019, 23 (01) :188-191