Solution Ionic Strength Engineering As a Generic Strategy to Coat Graphene Oxide (GO) on Various Functional Particles and Its Application in High-Performance Lithium-Sulfur (Li-S) Batteries

被引:170
作者
Rong, Jiepeng [1 ]
Ge, Mingyuan [1 ]
Fang, Xin [1 ]
Zhou, Chongwu [2 ]
机构
[1] Univ So Calif, Mork Family Dept Chem Engn & Mat Sci, Los Angeles, CA 90089 USA
[2] Univ So Calif, Ming Hsieh Dept Elect Engn, Los Angeles, CA 90089 USA
关键词
Graphene oxide; sulfur; lithium-sulfur batteries; coating; HIGH-ENERGY DENSITY; GRAPHITE OXIDE; AQUEOUS DISPERSIONS; CATHODE; REDUCTION; COMPOSITE; FILMS; NANOPLATELETS; NANOTUBES; CAPACITY;
D O I
10.1021/nl403404v
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A generic and facile method of coating graphene oxide (GO) on particles is reported, with sulfur/GO core-shell particles demonstrated as an example for lithium-sulfur (Li-S) battery application with superior performance. Particles of different diameters (ranging from 100 nm to 10 mu m), geometries, and compositions (sulfur, silicon, and carbon) are successfully wrapped up by GO, by engineering the ionic strength in solutions. Importantly, our method does not involve any chemical reaction between GO and the wrapped particles, and therefore, it can be extended to vast kinds of functional particles. The applications of sulfur/GO core-shell particles as Li-S battery cathode materials are further investigated, and the results show that sulfur/GO exhibit significant improvements over bare sulfur particles without coating. Galvanic charge-discharge test using GO/sulfur particles shows a specific capacity of 800 mAh/g is retained after 1000 cycles at 1 A/g current rate if only the mass of sulfur is taken into calculation, and 400 mAh/g if the total mass of sulfur/GO is considered. Most importantly, the capacity decay over 1000 cycles is less than 0.02% per cycle. The coating method developed in this study is facile, robust, and versatile and is expected to have wide range of applications in improving the properties of particle materials.
引用
收藏
页码:473 / 479
页数:7
相关论文
共 48 条
[1]   On the Surface Chemical Aspects of Very High Energy Density, Rechargeable Li-Sulfur Batteries [J].
Aurbach, Doron ;
Pollak, Elad ;
Elazari, Ran ;
Salitra, Gregory ;
Kelley, C. Scordilis ;
Affinito, John .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2009, 156 (08) :A694-A702
[2]   New insights into the limiting parameters of the Li/S rechargeable cell [J].
Barchasz, Celine ;
Lepretre, Jean-Claude ;
Alloin, Fannie ;
Patoux, Sebastien .
JOURNAL OF POWER SOURCES, 2012, 199 :322-330
[3]  
Behabtu N, 2010, NAT NANOTECHNOL, V5, P406, DOI [10.1038/NNANO.2010.86, 10.1038/nnano.2010.86]
[4]  
Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/nmat3191, 10.1038/NMAT3191]
[5]   Preparation and characterization of ultrathin films layer-by-layer self-assembled from graphite oxide nanoplatelets and polymers [J].
Cassagneau, T ;
Guérin, F ;
Fendler, JH .
LANGMUIR, 2000, 16 (18) :7318-7324
[6]  
Dasent W.E., 1982, Inorganic Energetics, V2
[7]  
Dennis RV, 2013, AM CERAM SOC BULL, V92, P18
[8]   The chemistry of graphene oxide [J].
Dreyer, Daniel R. ;
Park, Sungjin ;
Bielawski, Christopher W. ;
Ruoff, Rodney S. .
CHEMICAL SOCIETY REVIEWS, 2010, 39 (01) :228-240
[9]   Positive Electrode Materials for Li-Ion and Li-Batteries [J].
Ellis, Brian L. ;
Lee, Kyu Tae ;
Nazar, Linda F. .
CHEMISTRY OF MATERIALS, 2010, 22 (03) :691-714
[10]   Graphene-oxide-coated LiNi0.5Mn1.5O4 as high voltage cathode for lithium ion batteries with high energy density and long cycle life [J].
Fang, Xin ;
Ge, Mingyuan ;
Rong, Jiepeng ;
Zhou, Chongwu .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (12) :4083-4088