Bayesian estimation of adaptive bandwidth matrices in multivariate kernel density estimation

被引:49
作者
Zougab, Nabil [1 ,2 ]
Adjabi, Smail [2 ]
Kokonendji, Celestin C. [3 ]
机构
[1] Univ Tizi Ouzou, Tizi Ouzou, Algeria
[2] LAMOS, Lab Modelling & Optimizat Syst, Bejaia, Algeria
[3] Univ Franche Comte, Lab Math Besancon, UMR CNRS UFC 6623, F-25030 Besancon, France
关键词
Bandwidth matrix selection; Integrated squared error; Inverse Wishart distribution; Loss function; Plug-in; Smoothed cross-validation; DISCRETE TRIANGULAR DISTRIBUTIONS; CENSORED-DATA; SELECTION; EXTENSIONS;
D O I
10.1016/j.csda.2014.02.002
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Bandwidth selection in multivariate kernel density estimation has received considerable attention. In addition to classical methods of bandwidth selection, such as plug-in and cross-validation methods, Bayesian approaches have also been previously investigated. Bayesian estimation of adaptive bandwidth matrices in multivariate kernel density estimation is investigated, when the quadratic and entropy loss functions are used. Under the quadratic loss function, the proposed method is evaluated through a simulation study and two real data sets, which were already discussed in the literature. For these real-data applications, very interesting advantages of the proposed method are pointed out. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:28 / 38
页数:11
相关论文
共 20 条
[1]  
[Anonymous], 2012, LANG ENV STAT COMP
[2]   Bandwidth selection in marker dependent kernel hazard estimation [J].
Gamiz Perez, Maria Luz ;
Janys, Lena ;
Martinez Miranda, Maria Dolores ;
Nielsen, Jens Perch .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2013, 68 :155-169
[3]   Discrete triangular distributions and non-parametric estimation for probability mass function [J].
Kokonendji, C. C. ;
Kiesse, T. Senga ;
Zocchi, S. S. .
JOURNAL OF NONPARAMETRIC STATISTICS, 2007, 19 (6-8) :241-254
[4]   Discrete associated kernels method and extensions [J].
Kokonendji, Celestin C. ;
Kiesse, Tristan Senga .
STATISTICAL METHODOLOGY, 2011, 8 (06) :497-516
[5]   Extensions of discrete triangular distributions and boundary bias in kernel estimation for discrete functions [J].
Kokonendji, Celestin C. ;
Zocchi, Silvio S. .
STATISTICS & PROBABILITY LETTERS, 2010, 80 (21-22) :1655-1662
[6]   Bayes bandwidth selection in kernel density estimation with censored data [J].
Kulasekera, K. B. ;
Padgett, W. J. .
JOURNAL OF NONPARAMETRIC STATISTICS, 2006, 18 (02) :129-143
[7]   Density estimation using asymmetric kernels and Bayes bandwidths with censored data [J].
Kuruwita, C. N. ;
Kulasekera, K. B. ;
Padgett, W. J. .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2010, 140 (07) :1765-1774
[8]  
Li S., 2014, ECONOMETRIC IN PRESS
[9]   A Bayesian Approach to Parameter Estimation for Kernel Density Estimation via Transformations [J].
Liu, Qing ;
Pitt, David ;
Zhang, Xibin ;
Wu, Xueyuan .
ANNALS OF ACTUARIAL SCIENCE, 2011, 5 (02) :181-193
[10]   A NONPARAMETRIC ESTIMATE OF A MULTIVARIATE DENSITY-FUNCTION [J].
LOFTSGAARDEN, DO ;
QUESENBERRY, CP .
ANNALS OF MATHEMATICAL STATISTICS, 1965, 36 (03) :1049-1051