MALDI Efficiency of Metabolites Quantitatively Associated with their Structural Properties: A Quantitative Structure-Property Relationship (QSPR) Approach

被引:14
|
作者
Yukihira, Daichi [1 ]
Miura, Daisuke [2 ]
Fujimura, Yoshinori [2 ]
Umemura, Yoshikatsu [3 ]
Yamaguchi, Shinichi [3 ]
Funatsu, Shinji [3 ]
Yamazaki, Makoto [4 ]
Ohta, Tetsuya [4 ]
Inoue, Hiroaki [4 ]
Shindo, Mitsuru [5 ]
Wariishi, Hiroyuki [2 ,6 ,7 ]
机构
[1] Kyushu Univ, Grad Sch Bioresource & Bioenvironm Sci, Higashi Ku, Fukuoka, Japan
[2] Kyushu Univ, Innovat Ctr Med Redox Nav, Higashi Ku, Fukuoka, Japan
[3] Shimadzu Co Ltd, Analyt & Measuring Instruments Div, Life Sci Business Dept, MS Business Unit,Nakagyo Ku, Kyoto, Japan
[4] Mitsubishi Tanabe Pharma Corp, Div Res, Adv Med Res Labs, Toda, Saitama, Japan
[5] Kyushu Univ, Inst Mat Chem & Engn, Kasuga, Fukuoka 816, Japan
[6] Kyushu Univ, Bioarchitecture Ctr, Higashi Ku, Fukuoka, Japan
[7] Kyushu Univ, Fac Arts & Sci, Nishi Ku, Fukuoka 812, Japan
基金
日本科学技术振兴机构;
关键词
MALDI-MS; Metabolite analysis; QSPR; MASS-SPECTROMETRY; AMINO-ACIDS; MATRIX;
D O I
10.1007/s13361-013-0772-0
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) experiments require a suitable match of the matrix and target compounds to achieve a selective and sensitive analysis. However, it is still difficult to predict which metabolites are ionizable with a given matrix and which factors lead to an efficient ionization. In the present study, we extracted structural properties of metabolites that contribute to their ionization in MALDI-MS analyses exploiting our experimental data set. The MALDI-MS experiment was performed for 200 standard metabolites using 9-aminoacridine (9-AA) as the matrix. We then developed a prediction model for the ionization profiles (both the ionizability and ionization efficiency) of metabolites using a quantitative structure-property relationship (QSPR) approach. The classification model for the ionizability achieved a 91 % accuracy, and the regression model for the ionization efficiency reached a rank correlation coefficient of 0.77. An analysis of the descriptors contributing to such model construction suggested that the proton affinity is a major determinant of the ionization, whereas some substructures hinder efficient ionization. This study will lead to the development of more rational and predictable MALDI-MS analyses.
引用
收藏
页码:1 / 5
页数:5
相关论文
共 50 条
  • [41] Quantitative Structure-Property Relationship (QSPR) Prediction of Solvation Gibbs Energy of Bifunctional Compounds by Recursive Neural Networks
    Bernazzani, Luca
    Duce, Celia
    Micheli, Alessio
    Mollica, Vincenzo
    Tine, Maria Rosaria
    JOURNAL OF CHEMICAL AND ENGINEERING DATA, 2010, 55 (12): : 5425 - 5428
  • [42] A quantitative structure-property relationship (QSPR) for estimating solid material-air partition coefficients of organic compounds
    Huang, Lei
    Jolliet, Olivier
    INDOOR AIR, 2019, 29 (01) : 79 - 88
  • [43] Quantitative structure-property relationship (QSPR) study for predicting gas-liquid critical temperatures of organic compounds
    Zhou, Lulu
    Wang, Beibei
    Jiang, Juncheng
    Pan, Yong
    Wang, Qingsheng
    THERMOCHIMICA ACTA, 2017, 655 : 112 - 116
  • [44] Molecular modeling of polymers .16. Gaseous diffusion in polymers: A quantitative structure-property relationship (QSPR) analysis
    Patel, HC
    Tokarski, JS
    Hopfinger, AJ
    PHARMACEUTICAL RESEARCH, 1997, 14 (10) : 1349 - 1354
  • [45] Modeling of the henry constant of a series of pesticides: Quantitative structure-property relationship approach
    Bouakkadia A.
    Driouche Y.
    Kertiou N.
    Messadi D.
    International Journal of Safety and Security Engineering, 2020, 10 (03) : 389 - 396
  • [46] Estimation of the Heat Capacity of Ionic Liquids: A Quantitative Structure-Property Relationship Approach
    Sattari, Mehdi
    Gharagheizi, Farhad
    Ilani-Kashkouli, Poorandokht
    Mohammadi, Amir H.
    Ramjugernath, Deresh
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2013, 52 (36) : 13217 - 13221
  • [47] Estimation of physicochemical properties from the structure-property relationship: A new approach
    Golovanov, IB
    Tsygankova, IG
    QUANTITATIVE STRUCTURE-ACTIVITY RELATIONSHIPS, 2001, 19 (06): : 554 - 564
  • [48] Probabilistic Mean Quantitative Structure-Property Relationship Modeling of Jet Fuel Properties
    Hall, Clemens
    Creton, Benoit
    Rauch, Bastian
    Bauder, Uwe
    Aigner, Manfred
    ENERGY & FUELS, 2022, 36 (01) : 463 - 479
  • [49] Quantitative Structure-Property Relationship: XVII. Properties of Branched Hydrocarbon Molecules
    I. B. Golovanov
    S. M. Zhenodarova
    Russian Journal of General Chemistry, 2004, 74 : 828 - 833
  • [50] Quantitative structure-property relationship: XVII. Properties of branched hydrocarbon molecules
    Golovanov, IB
    Zhenodarova, SM
    RUSSIAN JOURNAL OF GENERAL CHEMISTRY, 2004, 74 (06) : 828 - 833