Rational wavelets on the real line

被引:4
作者
Bultheel, A
González-Vera, P
机构
[1] Katholieke Univ Leuven, Dept Comp Sci, B-3001 Heverlee, Belgium
[2] Univ La Laguna, Dept Math Anal, E-38206 La Laguna, Tenerife, Spain
关键词
orthogonal rational functions; wavelets; reproducing kernel;
D O I
10.1080/01630560008816941
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Suppose {phi(k)}(k=0)(n) is an orthonormal basis for the function space L-n of polynomials or rational functions of degree n with prescribed poles. Suppose n = 2(5) and set V-s = L-n. Then k(n)(z, w) = Sigma(k=0)(n)phi k(z)phi(k)(w), is a reproducing kernel for V-s. For fixed w, such reproducing kernels are known to be functions localized in the neighborhood of z = w. Moreover, by an appropriate choice of the parameters {xi nk}(k=0)(n), the functions {alpha(n,k)(z) = k(n)(z, xi(nk))}(k=0)(n) will be an orthogonal basis for V-s. The orthogonal complement W-s = Vs+1 - V-s is spanned by the functions {psi(n,k)(z) = l(n)(z,eta(nk))}(k=0)(n-1) for an appropriate choice of the parameters {eta(nk)}(k=0)(n-1) where l(n) = k(n+1) - k(n) is the reproducing kernel for W-s. These observations form the basic ingredients for a wavelet type of analysis for orthogonal rational functions on the real line with respect to an arbitrary probability measure.
引用
收藏
页码:77 / 96
页数:20
相关论文
共 25 条
  • [1] THEORY OF REPRODUCING KERNELS
    ARONSZAJN, N
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1950, 68 (MAY) : 337 - 404
  • [2] ORTHOGONAL RATIONAL FUNCTIONS WITH POLES ON THE UNIT-CIRCLE
    BULTHEEL, A
    GONZALEZVERA, P
    HENDRIKSEN, E
    NJASTAD, O
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1994, 182 (01) : 221 - 243
  • [3] BULTHEEL A, 1997, E J APPROX, V3, P21
  • [4] Bultheel A., 1999, CAMBRIDGE MONOGRAPHS, V5
  • [5] ON TRIGONOMETRIC WAVELETS
    CHUI, CK
    MHASKAR, HN
    [J]. CONSTRUCTIVE APPROXIMATION, 1993, 9 (2-3) : 167 - 190
  • [6] Davis P. J, 1975, Interpolation and Approximation
  • [7] DJRBASHIAN MM, 1990, NATO ADV SCI I C-MAT, V294, P135
  • [8] DJRBASHIAN MM, 1966, IZV AKAD NAUK ARMYAN, V1, P106
  • [9] DJRBASHIAN MM, 1966, IZV AKAD NAUK ARMY M, V1, P3
  • [10] Donoghue W. F., 1974, Die Grundlehren der mathematischen Wissenschaften, V207