First- and second-order dynamic equations with impulse

被引:9
作者
Atici, F. M. [1 ]
Biles, D. C. [1 ]
机构
[1] Western Kentucky Univ, Dept Math, Bowling Green, KY 42101 USA
关键词
D O I
10.1155/ADE.2005.119
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present existence results for discontinuous first- and continuous second-order dynamic equations on a time scale subject to fixed-time impulses and nonlinear boundary conditions.
引用
收藏
页码:119 / 132
页数:14
相关论文
共 21 条
[1]  
ADJE A, 1987, THESIS U CATHOLIQUE
[2]   On Green's functions and positive solutions for boundary value problems on time scales [J].
Atici, FM ;
Guseinov, GS .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2002, 141 (1-2) :75-99
[3]   First order dynamic inclusions on time scales [J].
Atici, FM ;
Biles, DC .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 292 (01) :222-237
[4]   Existence results for second order boundary value problem of impulsive dynamic equations on time scales [J].
Benchohra, M ;
Ntouyas, SK ;
Ouahab, A .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 296 (01) :65-73
[5]   On first order impulsive dynamic equations on time scales [J].
Benchohra, M ;
Henderson, J ;
Ntouyas, SK ;
Ouahab, A .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2004, 10 (06) :541-548
[6]  
BENCHOHRA M, 2002, INT J APPL MATH, V11, P77
[7]  
Bohner M., 2001, Dynamic Equations on Time Scales: AnIntroduction With Applications, DOI DOI 10.1007/978-1-4612-0201-1
[8]  
Bohner M., 2003, Advances in Dynamic Equations on Time Scales: An Introduction with Applications, DOI DOI 10.1007/978-0-8176-8230-9
[9]   Green's function and maximum principle for higher order ordinary differential equations with impulses [J].
Cabada, A ;
Liz, E ;
Lois, S .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2000, 30 (02) :435-446
[10]   Discontinuous impulsive differential equations with nonlinear boundary conditions [J].
Cabada, A ;
Liz, E .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 28 (09) :1491-1497