GPU-accelerated Monte Carlo simulation of MV-CBCT

被引:8
|
作者
Shi, Mengying [1 ,2 ,3 ]
Myronakis, Marios [2 ,3 ]
Jacobson, Matthew [2 ,3 ]
Ferguson, Dianne [2 ,3 ]
Williams, Christopher [2 ,3 ]
Lehmann, Mathias [4 ]
Baturin, Paul [5 ]
Huber, Pascal [4 ]
Fueglistaller, Rony [4 ]
Lozano, Ingrid Valencia [2 ,3 ]
Harris, Thomas [2 ,3 ]
Morf, Daniel [4 ]
Berbeco, Ross, I [2 ,3 ]
机构
[1] Univ Massachusetts Lowell, Dept Phys & Appl Phys, Med Phys Program, Lowell, MA USA
[2] Brigham & Womens Hosp, Dana Farber Canc Inst, 75 Francis St, Boston, MA 02115 USA
[3] Harvard Med Sch, Boston, MA 02115 USA
[4] Varian Med Syst, Baden, Switzerland
[5] Varian Med Syst, Palo Alto, CA USA
来源
PHYSICS IN MEDICINE AND BIOLOGY | 2020年 / 65卷 / 23期
关键词
GPU; Monte Carlo simulation; MV-CBCT; fast simulation; DOSE-CALCULATION; CLINICAL IMPLEMENTATION; ELECTRON-TRANSPORT; BEAM; VALIDATION; ACCURATE; CT; GEANT4; EGSNRC;
D O I
10.1088/1361-6560/abaeba
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Monte Carlo simulation (MCS) is one of the most accurate computation methods for dose calculation and image formation in radiation therapy. However, the high computational complexity and long execution time of MCS limits its broad use. In this paper, we present a novel strategy to accelerate MCS using a graphic processing unit (GPU), and we demonstrate the application in mega-voltage (MV) cone-beam computed tomography (CBCT) simulation. A new framework that generates a series of MV projections from a single simulation run is designed specifically for MV-CBCT acquisition. A Geant4-based GPU code for photon simulation is incorporated into the framework for the simulation of photon transport through a phantom volume. The FastEPID method, which accelerates the simulation of MV images, is modified and integrated into the framework. The proposed GPU-based simulation strategy was tested for its accuracy and efficiency in a Catphan 604 phantom and an anthropomorphic pelvis phantom with beam energies at 2.5 MV, 6 MV, and 6 MV FFF. In all cases, the proposed GPU-based simulation demonstrated great simulation accuracy and excellent agreement with measurement and CPU-based simulation in terms of reconstructed image qualities. The MV-CBCT simulation was accelerated by factors of roughly 900-2300 using an NVIDIA Tesla V100 GPU card against a 2.5 GHz AMD Opteron (TM) Processor 6380.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Comparison Between Siemens Standard MV-CBCT and the Investigational Imaging Beam-Line MV-CBCT
    Beltran, C.
    Faddegon, B.
    Bani-Hashemi, A.
    MEDICAL PHYSICS, 2008, 35 (06)
  • [32] GPU Accelerated Monte Carlo Simulation for Radiotherapy Dose Calculation
    Zhuge, Y.
    Xie, H.
    Cheng, J.
    Miller, R. W.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2009, 75 (03): : S702 - S702
  • [33] A GPU-Accelerated Monte Carlo Dose Computation Engine for Precision Small Animal Radiotherapy
    Liu, Z.
    Yang, Y.
    MEDICAL PHYSICS, 2022, 49 (06) : E494 - E494
  • [34] Validation of a GPU-Accelerated Monte Carlo Treatment Planning System for Proton Beam Therapy
    Rucinski, A.
    Battistoni, G.
    Gora, E.
    Durante, M.
    Gajewski, J.
    Garbacz, M.
    Kisielewicz, K.
    Krah, N.
    Patera, V.
    Rinaldi, I.
    Sas-Korczynska, B.
    Skora, T.
    Skrzypek, A.
    Tommasino, F.
    Scifoni, E.
    Schiavi, A.
    MEDICAL PHYSICS, 2018, 45 (06) : E261 - E261
  • [35] GPU-ACCELERATED MONTE CARLO CODE FOR FAST DOSE RECALCULATION IN PROTON BEAM THERAPY
    Rucinski, A.
    Gajewski, J.
    Olko, P.
    Rinaldi, I.
    Patera, V.
    Schiavi, A.
    ACTA PHYSICA POLONICA B, 2017, 48 (10): : 1625 - 1630
  • [36] Commissioning of GPU-Accelerated Monte Carlo Code FRED for Clinical Applications in Proton Therapy
    Gajewski, Jan
    Garbacz, Magdalena
    Chang, Chih-Wei
    Czerska, Katarzyna
    Durante, Marco
    Krah, Nils
    Krzempek, Katarzyna
    Kopec, Renata
    Lin, Liyong
    Mojzeszek, Natalia
    Patera, Vincenzo
    Pawlik-Niedzwiecka, Monika
    Rinaldi, Ilaria
    Rydygier, Marzena
    Pluta, Elzbieta
    Scifoni, Emanuele
    Skrzypek, Agata
    Tommasino, Francesco
    Schiavi, Angelo
    Rucinski, Antoni
    FRONTIERS IN PHYSICS, 2021, 8
  • [37] A GPU-Accelerated Monte Carlo Engine for Calculation of MLC-Collimated Electron Fields
    Brost, E.
    Tseung, H. Wan Chan
    Antolak, J.
    MEDICAL PHYSICS, 2021, 48 (06)
  • [38] Effective reconstruction of bioluminescence tomography based on GPU-accelerated inverse Monte Carlo method
    Ren, Shenghan
    Wang, Lin
    Zeng, Qi
    Chen, Duofang
    Chen, Xueli
    Liang, Jimin
    AIP ADVANCES, 2020, 10 (10)
  • [39] GPU accelerated Monte Carlo simulation of Brownian motors dynamics with CUDA
    Spiechowicz, J.
    Kostur, M.
    Machura, L.
    COMPUTER PHYSICS COMMUNICATIONS, 2015, 191 : 140 - 149
  • [40] GPU accelerated Monte Carlo simulation of Brownian motors dynamics with CUDA
    Spiechowicz, J.
    Kostur, M.
    Machura, L.
    Computer Physics Communications, 2015, 191 : 140 - 149