GPU-accelerated Monte Carlo simulation of MV-CBCT

被引:8
|
作者
Shi, Mengying [1 ,2 ,3 ]
Myronakis, Marios [2 ,3 ]
Jacobson, Matthew [2 ,3 ]
Ferguson, Dianne [2 ,3 ]
Williams, Christopher [2 ,3 ]
Lehmann, Mathias [4 ]
Baturin, Paul [5 ]
Huber, Pascal [4 ]
Fueglistaller, Rony [4 ]
Lozano, Ingrid Valencia [2 ,3 ]
Harris, Thomas [2 ,3 ]
Morf, Daniel [4 ]
Berbeco, Ross, I [2 ,3 ]
机构
[1] Univ Massachusetts Lowell, Dept Phys & Appl Phys, Med Phys Program, Lowell, MA USA
[2] Brigham & Womens Hosp, Dana Farber Canc Inst, 75 Francis St, Boston, MA 02115 USA
[3] Harvard Med Sch, Boston, MA 02115 USA
[4] Varian Med Syst, Baden, Switzerland
[5] Varian Med Syst, Palo Alto, CA USA
关键词
GPU; Monte Carlo simulation; MV-CBCT; fast simulation; DOSE-CALCULATION; CLINICAL IMPLEMENTATION; ELECTRON-TRANSPORT; BEAM; VALIDATION; ACCURATE; CT; GEANT4; EGSNRC;
D O I
10.1088/1361-6560/abaeba
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Monte Carlo simulation (MCS) is one of the most accurate computation methods for dose calculation and image formation in radiation therapy. However, the high computational complexity and long execution time of MCS limits its broad use. In this paper, we present a novel strategy to accelerate MCS using a graphic processing unit (GPU), and we demonstrate the application in mega-voltage (MV) cone-beam computed tomography (CBCT) simulation. A new framework that generates a series of MV projections from a single simulation run is designed specifically for MV-CBCT acquisition. A Geant4-based GPU code for photon simulation is incorporated into the framework for the simulation of photon transport through a phantom volume. The FastEPID method, which accelerates the simulation of MV images, is modified and integrated into the framework. The proposed GPU-based simulation strategy was tested for its accuracy and efficiency in a Catphan 604 phantom and an anthropomorphic pelvis phantom with beam energies at 2.5 MV, 6 MV, and 6 MV FFF. In all cases, the proposed GPU-based simulation demonstrated great simulation accuracy and excellent agreement with measurement and CPU-based simulation in terms of reconstructed image qualities. The MV-CBCT simulation was accelerated by factors of roughly 900-2300 using an NVIDIA Tesla V100 GPU card against a 2.5 GHz AMD Opteron (TM) Processor 6380.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] GPU-accelerated Monte Carlo simulation of electron and photon interactions for radiotherapy applications
    Franciosini, G.
    Battistoni, G.
    Cerqua, A.
    De Gregorio, A.
    De Maria, P.
    De Simoni, M.
    Dong, Y.
    Fischetti, M.
    Marafini, M.
    Mirabelli, R.
    Muscato, A.
    Patera, V
    Salvati, F.
    Sarti, A.
    Sciubba, A.
    Toppi, M.
    Traini, G.
    Trigilio, A.
    Schiavi, A.
    PHYSICS IN MEDICINE AND BIOLOGY, 2023, 68 (04)
  • [2] Scatter Correction Based on GPU-Accelerated Full Monte Carlo Simulation for Brain PET/MRI
    Ma, Bo
    Gaens, Michaela
    Caldeira, Liliana
    Bert, Julian
    Lohmann, Philipp
    Tellmann, Lutz
    Lerche, Christoph
    Scheins, Jurgen
    Kops, Elena Rota
    Xu, Hancong
    Lenz, Mirjam
    Pietrzyk, Uwe
    Shah, Nadim Jon
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2020, 39 (01) : 140 - 151
  • [3] GPU-accelerated Monte Carlo simulation of particle coagulation based on the inverse method
    Wei, J.
    Kruis, F. E.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 249 : 67 - 79
  • [4] Modeling and Analysis of Cardiac Hybrid Cellular Automata via GPU-Accelerated Monte Carlo Simulation
    Treml, Lilly Maria
    Bartocci, Ezio
    Gizzi, Alessio
    MATHEMATICS, 2021, 9 (02) : 1 - 24
  • [5] Monte Carlo dose calculations for high-dose-rate brachytherapy using GPU-accelerated processing
    Tian, Z.
    Zhang, M.
    Hrycushko, B.
    Albuquerque, K.
    Jiang, S. B.
    Jia, X.
    BRACHYTHERAPY, 2016, 15 (03) : 387 - 398
  • [6] GPU-accelerated Monte Carlo convolution/superposition implementation for dose calculation
    Zhou, Bo
    Yu, Cedric X.
    Chen, Danny Z.
    Hu, X. Sharon
    MEDICAL PHYSICS, 2010, 37 (11) : 5593 - 5603
  • [7] Domain decomposition in the GPU-accelerated Shift Monte Carlo code q
    Hamilton, Steven P.
    Evans, Thomas M.
    Royston, Katherine E.
    Biondo, Elliott D.
    ANNALS OF NUCLEAR ENERGY, 2022, 166
  • [8] Exploring Numba and CuPy for GPU-Accelerated Monte Carlo Radiation Transport
    Askar, Tair
    Yergaliyev, Argyn
    Shukirgaliyev, Bekdaulet
    Abdikamalov, Ernazar
    COMPUTATION, 2024, 12 (03)
  • [9] A GPU-accelerated Monte Carlo dose computation engine for small animal radiotherapy
    Liu, Zihao
    Zheng, Cheng
    Zhao, Ning
    Huang, Yunwen
    Chen, Jiahao
    Yang, Yidong
    MEDICAL PHYSICS, 2023, 50 (08) : 5238 - 5247
  • [10] GPU-accelerated Gibbs ensemble Monte Carlo simulations of Lennard-Jonesium
    Mick, Jason
    Hailat, Eyad
    Russo, Vincent
    Rushaidat, Kamel
    Schwiehert, Loren
    Potoff, Jeffrey
    COMPUTER PHYSICS COMMUNICATIONS, 2013, 184 (12) : 2662 - 2669