GPU-accelerated Monte Carlo simulation of MV-CBCT

被引:8
|
作者
Shi, Mengying [1 ,2 ,3 ]
Myronakis, Marios [2 ,3 ]
Jacobson, Matthew [2 ,3 ]
Ferguson, Dianne [2 ,3 ]
Williams, Christopher [2 ,3 ]
Lehmann, Mathias [4 ]
Baturin, Paul [5 ]
Huber, Pascal [4 ]
Fueglistaller, Rony [4 ]
Lozano, Ingrid Valencia [2 ,3 ]
Harris, Thomas [2 ,3 ]
Morf, Daniel [4 ]
Berbeco, Ross, I [2 ,3 ]
机构
[1] Univ Massachusetts Lowell, Dept Phys & Appl Phys, Med Phys Program, Lowell, MA USA
[2] Brigham & Womens Hosp, Dana Farber Canc Inst, 75 Francis St, Boston, MA 02115 USA
[3] Harvard Med Sch, Boston, MA 02115 USA
[4] Varian Med Syst, Baden, Switzerland
[5] Varian Med Syst, Palo Alto, CA USA
来源
PHYSICS IN MEDICINE AND BIOLOGY | 2020年 / 65卷 / 23期
关键词
GPU; Monte Carlo simulation; MV-CBCT; fast simulation; DOSE-CALCULATION; CLINICAL IMPLEMENTATION; ELECTRON-TRANSPORT; BEAM; VALIDATION; ACCURATE; CT; GEANT4; EGSNRC;
D O I
10.1088/1361-6560/abaeba
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Monte Carlo simulation (MCS) is one of the most accurate computation methods for dose calculation and image formation in radiation therapy. However, the high computational complexity and long execution time of MCS limits its broad use. In this paper, we present a novel strategy to accelerate MCS using a graphic processing unit (GPU), and we demonstrate the application in mega-voltage (MV) cone-beam computed tomography (CBCT) simulation. A new framework that generates a series of MV projections from a single simulation run is designed specifically for MV-CBCT acquisition. A Geant4-based GPU code for photon simulation is incorporated into the framework for the simulation of photon transport through a phantom volume. The FastEPID method, which accelerates the simulation of MV images, is modified and integrated into the framework. The proposed GPU-based simulation strategy was tested for its accuracy and efficiency in a Catphan 604 phantom and an anthropomorphic pelvis phantom with beam energies at 2.5 MV, 6 MV, and 6 MV FFF. In all cases, the proposed GPU-based simulation demonstrated great simulation accuracy and excellent agreement with measurement and CPU-based simulation in terms of reconstructed image qualities. The MV-CBCT simulation was accelerated by factors of roughly 900-2300 using an NVIDIA Tesla V100 GPU card against a 2.5 GHz AMD Opteron (TM) Processor 6380.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] GPU-Based Acceleration of MV-CBCT Simulation
    Shi, M.
    Myronakis, M.
    Jacobson, M.
    Lehmann, M.
    Ferguson, D.
    Baturin, P.
    Huber, P.
    Fueglistaller, R.
    Harris, T.
    Lozano, I. Valencia
    Williams, C.
    Morf, D.
    Berbeco, R.
    MEDICAL PHYSICS, 2020, 47 (06) : E424 - E425
  • [2] GPU-accelerated Monte Carlo simulation of electron and photon interactions for radiotherapy applications
    Franciosini, G.
    Battistoni, G.
    Cerqua, A.
    De Gregorio, A.
    De Maria, P.
    De Simoni, M.
    Dong, Y.
    Fischetti, M.
    Marafini, M.
    Mirabelli, R.
    Muscato, A.
    Patera, V
    Salvati, F.
    Sarti, A.
    Sciubba, A.
    Toppi, M.
    Traini, G.
    Trigilio, A.
    Schiavi, A.
    PHYSICS IN MEDICINE AND BIOLOGY, 2023, 68 (04):
  • [3] GPU-accelerated Monte Carlo simulation of particle coagulation based on the inverse method
    Wei, J.
    Kruis, F. E.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 249 : 67 - 79
  • [4] GPU-Accelerated Monte Carlo Simulation for a Single-Photon Underwater Lidar
    Liao, Yupeng
    Shangguan, Mingjia
    Yang, Zhifeng
    Lin, Zaifa
    Wang, Yuanlun
    Li, Sihui
    REMOTE SENSING, 2023, 15 (21)
  • [5] GPU-ACCELERATED AND CPU SIMD OPTIMIZED MONTE CARLO SIMULATION OF φ4 MODEL
    Bialas, Piotr
    Kowal, Jakub
    Strzelecki, Adam
    COMPUTING AND INFORMATICS, 2014, 33 (05) : 1191 - 1208
  • [6] GPU-Accelerated Ray Tracing for Visualizing Monte Carlo Models
    Nease, Brian
    Corser, Joel
    Burke, Paul
    JOINT INTERNATIONAL CONFERENCE ON SUPERCOMPUTING IN NUCLEAR APPLICATIONS + MONTE CARLO, SNA + MC 2024, 2024, 302
  • [7] GPU-accelerated variational path integral Monte Carlo simulations
    Hinde, Robert J.
    Harrison, Robert
    Peterson, Greg
    Kakani, Venkata Prasanth
    Mudhasani, Shanthan
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2010, 240
  • [8] A GPU-Accelerated Monte Carlo Method for BNCT Dose Calculations
    Wang, Y.
    Li, S.
    Wu, J.
    Ye, Z.
    Tao, L.
    Pei, X.
    Xu, X. G.
    MEDICAL PHYSICS, 2024, 51 (10) : 7748 - 7748
  • [9] GPU-Accelerated Monte Carlo Simulations of Dense Stellar Systems
    Pattabiraman, B.
    Umbreit, S.
    Liao, W.
    Rasio, F.
    Kalogera, V.
    Choudhary, A.
    ADVANCES IN COMPUTATIONAL ASTROPHYSICS: METHODS, TOOLS AND OUTCOMES, 2012, 453 : 329 - 332
  • [10] GPU-accelerated Classical Trajectory Calculation Direct Simulation Monte Carlo applied to shock waves
    Norman, Paul
    Valentini, Paolo
    Schwartzentruber, Thomas
    JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 247 : 153 - 167