Bayesian skew-probit regression for binary response data

被引:14
作者
Bazan, Jorge L. [1 ]
Romeo, Jose S. [2 ]
Rodrigues, Josemar [1 ]
机构
[1] Univ Sao Paulo, Inst Ciencias Matemat & Comp, BR-13560970 Sao Carlos, SP, Brazil
[2] Univ Santiago Chile, Dept Matemat & Ciencia Comp, Santiago, Chile
基金
巴西圣保罗研究基金会;
关键词
Skew-probit links; binary regression; Bayesian estimation; power normal distribution; reciprocal power normal distribution; MODEL;
D O I
10.1214/13-BJPS218
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Since many authors have emphasized the need of asymmetric link functions to fit binary regression models, we propose in this work two new skew-probit link functions for the binary response variables. These link functions will be named power probit and reciprocal power probit due to the relation between them including the probit link as a special case. Also, the probit regressions are special cases of the models considered in this work. A Bayesian inference approach using MCMC is developed for real data suggesting that the link functions proposed here are more appropriate than other link functions used in the literature. In addition, simulation study show that the use of probit model will lead to biased estimate of the regression coefficient.
引用
收藏
页码:467 / 482
页数:16
相关论文
共 50 条
  • [41] BAYSIAN INFERENCE FOR ORDERED RESPONSE DATA WITH A DYNAMIC SPATIAL-ORDERED PROBIT MODEL
    Wang, Xiaokun
    Kockelman, Kara M.
    JOURNAL OF REGIONAL SCIENCE, 2009, 49 (05) : 877 - 913
  • [42] Bayesian additive regression trees in spatial data analysis with sparse observations
    Kim, Chanmin
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2022, 92 (15) : 3275 - 3300
  • [43] Skewed link-based regression models for misclassified binary data
    Lizbeth Naranjo
    Carlos J. Pérez
    Jacinto Martín
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2019, 113 : 1585 - 1599
  • [44] Skewed link-based regression models for misclassified binary data
    Naranjo, Lizbeth
    Perez, Carlos J.
    Martin, Jacinto
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (02) : 1585 - 1599
  • [45] Bayesian profile regression for clustering analysis involving a longitudinal response and explanatory variables
    Rouanet, Anais
    Johnson, Rob
    Strauss, Magdalena
    Richardson, Sylvia
    Tom, Brian D.
    White, Simon R.
    Kirk, Paul D. W.
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2024, 73 (02) : 314 - 339
  • [46] Bayesian Conway-Maxwell-Poisson (CMP) regression for longitudinal count data
    Alam, Morshed
    Gwon, Yeongjin
    Meza, Jane
    COMMUNICATIONS FOR STATISTICAL APPLICATIONS AND METHODS, 2023, 30 (03) : 291 - 309
  • [47] Bayesian Sparse Multivariate Regression with Asymmetric Nonlocal Priors for Microbiome Data Analysis
    Shuler, Kurtis
    Sison-Mangus, Marilou
    Lee, Juhee
    BAYESIAN ANALYSIS, 2020, 15 (02): : 559 - 578
  • [48] Hierarchical Bayesian spectral regression with shape constraints for multi-group data
    Lenk, Peter
    Lee, Jangwon
    Han, Dongu
    Park, Jichan
    Choi, Taeryon
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2024, 200
  • [49] Analysis of Clustered Binary Data With Unequal Cluster Sizes: A Semiparametric Bayesian Approach
    Nott, David J.
    Kuk, Anthony Y. C.
    JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2010, 15 (01) : 101 - 118
  • [50] On analysis of binary response data in longitudinal factorial studies
    Fan, Chunpeng
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2017, 87 (01) : 100 - 122