Exponential synchronization of fractional-order complex networks via pinning impulsive control

被引:75
作者
Wang, Fei [1 ]
Yang, Yongqing [2 ]
Hu, Aihua [2 ]
Xu, Xianyun [2 ]
机构
[1] Jiangnan Univ, Key Lab Adv Proc Control Light Ind, Minist Educ, Wuxi, Peoples R China
[2] Jiangnan Univ, Sch Sci, Wuxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Fractional-order; Complex networks; Exponential synchronization; Pinning control; Impulsive control; PROJECTIVE SYNCHRONIZATION; DYNAMICAL NETWORKS; SAMPLED-DATA; SYSTEMS;
D O I
10.1007/s11071-015-2292-x
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this paper, a pinning impulsive control scheme is adopted to investigate the synchronization of fractional complex dynamical networks. An effective method has been applied to select controlled nodes at each impulsive constants. Based on the Lyapunov function method and the connection between the exponential function and Mittag-Leffler function, sufficient conditions for achieving exponential synchronization of fractional complex networks have been derived. Finally, numerical simulations are exploited to verify the effectiveness of the theoretical results, and some discussions about synchronization region are given.
引用
收藏
页码:1979 / 1987
页数:9
相关论文
共 50 条
[41]   Cluster synchronization in fractional-order complex dynamical networks [J].
Chen, Liping ;
Chai, Yi ;
Wu, Ranchao ;
Sun, Jian ;
Ma, Tiedong .
PHYSICS LETTERS A, 2012, 376 (35) :2381-2388
[42]   Exponential quasi-synchronization of conformable fractional-order complex dynamical networks [J].
Chu, Xiaoyan ;
Xu, Liguang ;
Hu, Hongxiao .
CHAOS SOLITONS & FRACTALS, 2020, 140
[43]   Pinning synchronization of fractional and impulsive complex networks via event-triggered strategy [J].
Hai, Xudong ;
Ren, Guojian ;
Yu, Yongguang ;
Xu, Conghui ;
Zeng, Yanxiang .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2020, 82
[44]   Projective synchronization via adaptive pinning control for fractional-order complex network with time-varying coupling strength [J].
Zhu, Darui ;
Wang, Rui ;
Liu, Chongxin ;
Duan, Jiandong .
INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2019, 30 (07)
[45]   Exponential synchronization of complex delayed dynamical networks via pinning periodically intermittent control [J].
Cai, Shuiming ;
Hao, Junjun ;
He, Qinbin ;
Liu, Zengrong .
PHYSICS LETTERS A, 2011, 375 (19) :1965-1971
[46]   Intermittent control for finite-time synchronization of fractional-order complex networks [J].
Zhang, Lingzhong ;
Zhong, Jie ;
Lu, Jianquan .
NEURAL NETWORKS, 2021, 144 :11-20
[47]   Asymptotic and Pinning Synchronization of Fractional-Order Nonidentical Complex Dynamical Networks with Uncertain Parameters [J].
Wang, Yu ;
He, Xiliang ;
Li, Tianzeng .
FRACTAL AND FRACTIONAL, 2023, 7 (08)
[48]   Pinning synchronization of fractional-order complex networks with Lipschitz-type nonlinear dynamics [J].
Wang, Junwei ;
Ma, Qinghua ;
Chen, Aimin ;
Liang, Zhipeng .
ISA TRANSACTIONS, 2015, 57 :111-116
[49]   Adaptive and Exponential Synchronization of Uncertain Fractional-Order T-S Fuzzy Complex Networks With Coupling Time-Varying Delays via Pinning Control Strategy [J].
Wu, Xiru ;
Ai, Qingming ;
Wang, Yaonan .
IEEE ACCESS, 2021, 9 :2007-2017
[50]   Adaptive Synchronization of Complex Dynamical Networks via Distributed Pinning Impulsive Control [J].
Dong Ding ;
Ze Tang ;
Yan Wang ;
Zhicheng Ji .
Neural Processing Letters, 2020, 52 :2669-2686