Necessary and sufficient conditions for the solvability of the Lp Dirichlet problem on Lipschitz domains

被引:40
作者
Shen, Zhongwei [1 ]
机构
[1] Univ Kentucky, Dept Math, Lexington, KY 40506 USA
关键词
D O I
10.1007/s00208-006-0022-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the homogeneous elliptic systems of order 2l with real constant coefficients on Lipschitz domains in R-n, n >= 4. For any fixed p > 2, we show that a reverse Holder condition with exponent p is necessary and sufficient for the solvability of the Dirichlet problem with boundary data in L-p. We also obtain a simple sufficient condition. As a consequence, we establish the solvability of the L-p Dirichlet problem for n >= 4 and 2 - epsilon < p < 2(n-1)/n-3 + epsilon. The range of p is known to be sharp if l >= 2 and 4 <= n = 2l + 1. For the polyharmonic equation, the sharp range of p is also found in the case n = 6, 7 if l =2, and n =2l + 2 if l >= 3.
引用
收藏
页码:697 / 725
页数:29
相关论文
共 41 条
[1]  
Adams A, 2003, SOBOLEV SPACES
[2]  
[Anonymous], ANN MATH STUDIES
[3]  
Caffarelli LA, 1998, COMMUN PUR APPL MATH, V51, P1
[4]  
DAHLBERG B, 1977, ARCH RATION MECH AN, V65, P273
[5]  
Dahlberg B., 1990, LECTURE NOTES PURE A, V122, P621
[6]   THE DIRICHLET PROBLEM FOR THE BIHARMONIC EQUATION IN A LIPSCHITZ DOMAIN [J].
DAHLBERG, BEJ ;
KENIG, CE ;
VERCHOTA, GC .
ANNALES DE L INSTITUT FOURIER, 1986, 36 (03) :109-135
[7]   BOUNDARY-VALUE PROBLEMS FOR THE SYSTEMS OF ELASTOSTATICS IN LIPSCHITZ-DOMAINS [J].
DAHLBERG, BEJ ;
KENIG, CE ;
VERCHOTA, GC .
DUKE MATHEMATICAL JOURNAL, 1988, 57 (03) :795-818
[8]   Area integral estimates for higher order elliptic equations and systems [J].
Dahlberg, BEJ ;
Kenig, CE ;
Pipher, J ;
Verchota, GC .
ANNALES DE L INSTITUT FOURIER, 1997, 47 (05) :1425-+
[9]   ON THE POISSON INTEGRAL FOR LIPSCHITZ AND C1-DOMAINS [J].
DAHLBERG, BEJ .
STUDIA MATHEMATICA, 1979, 66 (01) :13-24
[10]   HARDY-SPACES AND THE NEUMANN PROBLEM IN L-RHO FOR LAPLACES-EQUATION IN LIPSCHITZ-DOMAINS [J].
DAHLBERG, BEJ ;
KENIG, CE .
ANNALS OF MATHEMATICS, 1987, 125 (03) :437-465