On the construction of a ground truth framework for evaluating voxel-based diffusion tensor MRI analysis methods

被引:47
作者
Van Hecke, Wirn [1 ,2 ]
Sijbers, Jan [1 ]
De Backer, Steve [1 ]
Poot, Dirk [1 ]
Parizel, Paul M. [2 ]
Leemans, Alexander [3 ,4 ]
机构
[1] Univ Antwerp, Dept Phys, Vis lab, B-2610 Antwerp, Belgium
[2] Univ Antwerp, Dept Radiol, Univ Antwerp Hosp, B-2610 Antwerp, Belgium
[3] Cardiff Univ, Sch Psychol, CUBRIC, Cardiff, S Glam, Wales
[4] Univ Med Ctr Utrecht, Dept Radiol, Image Sci Inst, Utrecht, Netherlands
关键词
Diffusion tensor imaging; Voxel-based analysis; Simulated data; Coregistration; Atlas construction; WHITE-MATTER ABNORMALITIES; REMITTING MULTIPLE-SCLEROSIS; VISCOUS-FLUID MODEL; CORPUS-CALLOSUM; IMAGE REGISTRATION; FIBER TRACTOGRAPHY; NERVOUS-SYSTEM; SCHIZOPHRENIA; BRAIN; MORPHOMETRY;
D O I
10.1016/j.neuroimage.2009.02.032
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Although many studies are Starting to use voxel-based analysis (VBA) methods to compare diffusion tensor images between healthy and diseased subjects, it has been demonstrated that VBA results depend heavily on parameter settings and implementation strategies, such as the applied coregistration technique, smoothing kernel width, statistical analysis, etc. In order to investigate the effect of different parameter settings and implementations on the accuracy and precision of the VBA results quantitatively, ground truth knowledge regarding the underlying microstructural alterations is required. To address the lack of such a gold standard, simulated diffusion tensor data sets are developed, which can model an array of anomalies in the diffusion properties of a predefined location. These data sets can be employed to evaluate the numerous parameters that characterize the pipeline of a VBA algorithm and to compare the accuracy, precision, and reproducibility of different post-processing approaches quantitatively. We are convinced that the use of these simulated data sets can improve the understanding of how different diffusion tensor image post-processing techniques affect the outcome of VBA. In turn, this may possibly lead to a more standardized and reliable evaluation of diffusion tensor data sets of large study groups with a wide range of white matter altering pathologies. The simulated DTI data sets will be made available online (http://www.dti.ua.ac.be). (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:692 / 707
页数:16
相关论文
共 91 条
[1]   Normal aging in the central nervous system: quantitative MR diffusion-tensor analysis [J].
Abe, O ;
Aoki, S ;
Hayashi, N ;
Yamada, H ;
Kunimatsu, A ;
Mori, H ;
Yoshikawa, T ;
Okubo, T ;
Ohtomo, K .
NEUROBIOLOGY OF AGING, 2002, 23 (03) :433-441
[2]   Abnormal brain white matter in schizophrenia: a diffusion tensor imaging study [J].
Agartz, I ;
Andersson, JLR ;
Skare, S .
NEUROREPORT, 2001, 12 (10) :2251-2254
[3]   Spatial transformations of diffusion tensor magnetic resonance images [J].
Alexander, DC ;
Pierpaoli, C ;
Basser, PJ ;
Gee, JC .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2001, 20 (11) :1131-1139
[4]   Diffusion tensor imaging with tract-based spatial statistics reveals local white matter abnormalities in preterm infants [J].
Anjari, Mustafa ;
Srinivasan, Latha ;
Allsop, Joanna M. ;
Hajnal, Joseph V. ;
Rutherford, Mary A. ;
Edwards, A. David ;
Counsell, Serena J. .
NEUROIMAGE, 2007, 35 (03) :1021-1027
[5]   MRI study of white matter diffusion anisotropy in schizophrenia [J].
Ardekani, BA ;
Nierenberg, J ;
Hoptman, MJ ;
Javitt, DC ;
Lim, KO .
NEUROREPORT, 2003, 14 (16) :2025-2029
[6]   Brain morphometry using diffusion-weighted magnetic resonance imaging: application to schizophrenia [J].
Ardekani, BA ;
Bappal, A ;
D'Angelo, D ;
Ashtari, M ;
Lencz, T ;
Szeszko, PR ;
Butler, PD ;
Javitt, DC ;
Lim, KO ;
Hrabe, J ;
Nierenberg, J ;
Branch, CA ;
Hoptman, MJ .
NEUROREPORT, 2005, 16 (13) :1455-1459
[7]   Voxel-based morphometry - The methods [J].
Ashburner, J ;
Friston, KJ .
NEUROIMAGE, 2000, 11 (06) :805-821
[8]  
Ashburner J, 1999, HUM BRAIN MAPP, V7, P254, DOI 10.1002/(SICI)1097-0193(1999)7:4<254::AID-HBM4>3.0.CO
[9]  
2-G
[10]  
Bammer R, 2000, MAGNET RESON MED, V44, P583, DOI 10.1002/1522-2594(200010)44:4<583::AID-MRM12>3.0.CO