An Adaptive Differential Evolution Algorithm for Global Optimization in Dynamic Environments

被引:101
作者
Das, Swagatam [1 ]
Mandal, Ankush [2 ]
Mukherjee, Rohan [2 ]
机构
[1] Indian Stat Inst, ECSU, Kolkata 700108, India
[2] Jadavpur Univ, Dept Elect & Telecommun Engn, Kolkata 700108, India
关键词
Differential evolution; diversity; double mutation strategy; dynamic optimization problems; MULTIMODAL OPTIMIZATION; OPTIMA; STRATEGIES; MODEL;
D O I
10.1109/TCYB.2013.2278188
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article proposes a multipopulation-based adaptive differential evolution (DE) algorithm to solve dynamic optimization problems (DOPs) in an efficient way. The algorithm uses Brownian and adaptive quantum individuals in conjunction with the DE individuals to maintain the diversity and exploration ability of the population. This algorithm, denoted as dynamic DE with Brownian and quantum individuals (DDEBQ), uses a neighborhood-driven double mutation strategy to control the perturbation and thereby prevents the algorithm from converging too quickly. In addition, an exclusion rule is used to spread the subpopulations over a larger portion of the search space as this enhances the optima tracking ability of the algorithm. Furthermore, an aging mechanism is incorporated to prevent the algorithm from stagnating at any local optimum. The performance of DDEBQ is compared with several state-of-the-art evolutionary algorithms using a suite of benchmarks from the generalized dynamic benchmark generator (GDBG) system used in the competition on evolutionary computation in dynamic and uncertain environments, held under the 2009 IEEE Congress on Evolutionary Computation (CEC). The simulation results indicate that DDEBQ outperforms other algorithms for most of the tested DOP instances in a statistically meaningful way.
引用
收藏
页码:966 / 978
页数:13
相关论文
共 38 条
[1]  
Allmendinger R, 2010, LECT NOTES COMPUT SC, V6239, P161, DOI 10.1007/978-3-642-15871-1_17
[2]   Optimization of dynamic systems: A trigonometric differential evolution approach [J].
Angira, Rakesh ;
Santosh, Alladwar .
COMPUTERS & CHEMICAL ENGINEERING, 2007, 31 (09) :1055-1063
[3]  
Basak A., 2012, IEEE T EVOLUT COMPUT, VPP, P1
[4]  
Blackwell T., 2007, Studies in Computational Intelligence, P29, DOI [DOI 10.1007/978-3-540-49774-5_2, DOI 10.1007/978-3-540-49774-52]
[5]  
Branke J., 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), P1875, DOI 10.1109/CEC.1999.785502
[6]   Differential evolution and differential ant-stigmergy on dynamic optimisation problems [J].
Brest, Janez ;
Korosec, Peter ;
Silc, Jurij ;
Zamuda, Ales ;
Boskovic, Borko ;
Maucec, Mirjam Sepesy .
INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2013, 44 (04) :663-679
[7]   Dynamic Optimization using Self-Adaptive Differential Evolution [J].
Brest, Janez ;
Zamuda, Ales ;
Boskovic, Borko ;
Maucec, Mirjam Sepesy ;
Zumer, Viljem .
2009 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-5, 2009, :415-422
[8]   Real-parameter evolutionary multimodal optimization - A survey of the state-of-the-art [J].
Das, Swagatam ;
Maity, Sayan ;
Qu, Bo-Yang ;
Suganthan, P. N. .
SWARM AND EVOLUTIONARY COMPUTATION, 2011, 1 (02) :71-88
[9]   Differential Evolution: A Survey of the State-of-the-Art [J].
Das, Swagatam ;
Suganthan, Ponnuthurai Nagaratnam .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2011, 15 (01) :4-31
[10]   Differential Evolution Using a Neighborhood-Based Mutation Operator [J].
Das, Swagatam ;
Abraham, Ajith ;
Chakraborty, Uday K. ;
Konar, Amit .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2009, 13 (03) :526-553