Optimization of learned dictionary for sparse coding in speech processing

被引:11
|
作者
He, Yongjun [1 ]
Sun, Guanglu [1 ]
Han, Jiqing [2 ]
机构
[1] Harbin Univ Sci & Technol, Sch Comp Sci & Technol, Harbin 150080, Peoples R China
[2] Harbin Inst Technol, Harbin 150001, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Sparse coding; Speech denoising; Speech recognition; Dictionary optimization; K-SVD; OVERCOMPLETE DICTIONARIES; REPRESENTATION; ALGORITHM; CLASSIFICATION; REGRESSION; SEPARATION; EQUATIONS; SIGNALS; SYSTEMS;
D O I
10.1016/j.neucom.2015.03.061
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
As a promising technique, sparse coding has been widely used for the analysis, representation, compression, denoising and separation of speech. This technique needs a good dictionary which contains atoms to represent speech signals. Although many methods have been proposed to learn such a dictionary, there are still two problems. First, unimportant atoms bring a heavy computational load to sparse decomposition and reconstruction, which prevents sparse coding from real-time application. Second, in speech denoising and separation, harmful atoms have no or ignorable contributions to reducing the sparsity degree but increase the source confusion, resulting in severe distortions. To solve these two problems, we first analyze the inherent assumptions of sparse coding and show that distortion can be caused if the assumptions do not hold true. Next, we propose two methods to optimize a given dictionary by removing unimportant atoms and harmful atoms, respectively. Experiments show that the proposed methods can further improve the performance of dictionaries. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:471 / 482
页数:12
相关论文
共 50 条
  • [41] COVARIATE-DEPENDENT DICTIONARY LEARNING AND SPARSE CODING
    Zhou, Mingyuan
    Yang, Hongxia
    Sapiro, Guillermo
    Dunson, David
    Carin, Lawrence
    2011 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2011, : 5824 - 5827
  • [42] Kernel Regularized Nonlinear Dictionary Learning for Sparse Coding
    Liu, Huaping
    Liu, He
    Sun, Fuchun
    Fang, Bin
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2019, 49 (04): : 766 - 775
  • [43] A Convergent Incoherent Dictionary Learning Algorithm for Sparse Coding
    Bao, Chenglong
    Quan, Yuhui
    Ji, Hui
    COMPUTER VISION - ECCV 2014, PT VI, 2014, 8694 : 302 - 316
  • [44] Multi-Attributed Dictionary Learning for Sparse Coding
    Chiang, Chen-Kuo
    Su, Te-Feng
    Yen, Chih
    Lai, Shang-Hong
    2013 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2013, : 1137 - 1144
  • [45] Weak Correlation Dictionary Construction Method for Sparse Coding
    龙海霞
    卓力
    屈盼玲
    张菁
    JournalofShanghaiJiaotongUniversity(Science), 2017, 22 (01) : 77 - 81
  • [46] Weak correlation dictionary construction method for sparse coding
    Long H.
    Zhuo L.
    Qu P.
    Zhang J.
    Journal of Shanghai Jiaotong University (Science), 2017, 22 (1) : 77 - 81
  • [47] Adaptive sparse coding on PCA dictionary for image denoising
    Qian Liu
    Caiming Zhang
    Qiang Guo
    Hui Xu
    Yuanfeng Zhou
    The Visual Computer, 2016, 32 : 535 - 549
  • [48] Dictionary Learning for Sparse Coding: Algorithms and Convergence Analysis
    Bao, Chenglong
    Ji, Hui
    Quan, Yuhui
    Shen, Zuowei
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2016, 38 (07) : 1356 - 1369
  • [49] Sparse Coding and Dictionary Learning for Symmetric Positive Definite Matrices: A Kernel Approach
    Harandi, Mehrtash T.
    Sanderson, Conrad
    Hartley, Richard
    Lovell, Brian C.
    COMPUTER VISION - ECCV 2012, PT II, 2012, 7573 : 216 - 229
  • [50] Universal Regularizers for Robust Sparse Coding and Modeling
    Ramirez, Ignacio
    Sapiro, Guillermo
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2012, 21 (09) : 3850 - 3864