An Airy discrete variable representation basis

被引:8
作者
Littlejohn, RG [1 ]
Cargo, M [1 ]
机构
[1] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
关键词
D O I
10.1063/1.1481389
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A new discrete variable representation (DVR) basis is presented, one that is based on Airy functions. That is, the functions of the "finite basis representation" (actually infinite in this case) are energy eigenfunctions in a constant force field. The exact matrix elements of the kinetic energy are computed. The use of the Airy DVR functions in diagonalizing a one-dimensional Hamiltonian is illustrated.(C) 2002 American Institute of Physics.
引用
收藏
页码:37 / 42
页数:6
相关论文
共 29 条
[1]  
BACIC Z, 1987, J CHEM PHYS, V86, P3065
[2]   HIGHLY EXCITED VIBRATIONAL LEVELS OF FLOPPY TRIATOMIC-MOLECULES - A DISCRETE VARIABLE REPRESENTATION - DISTRIBUTED GAUSSIAN-BASIS APPROACH [J].
BACIC, Z ;
LIGHT, JC .
JOURNAL OF CHEMICAL PHYSICS, 1986, 85 (08) :4594-4604
[3]   The unexplained accuracy of the Lagrange-mesh method [J].
Baye, D ;
Hesse, M ;
Vincke, M .
PHYSICAL REVIEW E, 2002, 65 (02)
[4]   GENERALIZED MESHES FOR QUANTUM-MECHANICAL PROBLEMS [J].
BAYE, D ;
HEENEN, PH .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1986, 19 (11) :2041-2059
[5]   Phase space deformation and basis set optimization [J].
Cargo, MC ;
Littlejohn, RG .
PHYSICAL REVIEW E, 2002, 65 (02) :1-026703
[6]   USE OF THE DISCRETE VARIABLE REPRESENTATION IN THE QUANTUM DYNAMICS BY A WAVE PACKET PROPAGATION - PREDISSOCIATION OF NAL(1-SIGMA-0+)-]NAL(0+)-]NA(S-2)+I(P-2) [J].
CHOI, SE ;
LIGHT, JC .
JOURNAL OF CHEMICAL PHYSICS, 1989, 90 (05) :2593-2604
[7]   A NOVEL DISCRETE VARIABLE REPRESENTATION FOR QUANTUM-MECHANICAL REACTIVE SCATTERING VIA THE S-MATRIX KOHN METHOD [J].
COLBERT, DT ;
MILLER, WH .
JOURNAL OF CHEMICAL PHYSICS, 1992, 96 (03) :1982-1991
[8]   CALCULATION OF MATRIX ELEMENTS FOR ONE-DIMENSIONAL QUANTUM-MECHANICAL PROBLEMS [J].
DICKINSON, AS ;
CERTAIN, PR .
JOURNAL OF CHEMICAL PHYSICS, 1968, 49 (09) :4209-+
[9]  
ESCHAVE J, 1992, CHEM PHYS LETT, V190, P225
[10]   Phase space approach for optimizing grid representations: The mapped Fourier method [J].
Fattal, E ;
Baer, R ;
Kosloff, R .
PHYSICAL REVIEW E, 1996, 53 (01) :1217-1227