Note on immersion dimension of real Grassmannians

被引:0
作者
Petrovic, Zoran Z. [1 ]
Prvulovic, Branislav I. [1 ]
机构
[1] Univ Belgrade, Fac Math, Belgrade, Serbia
关键词
Grassmannian; Immersion; Modified Postnikov tower;
D O I
10.1016/j.topol.2014.07.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Immersion dimension of a smooth manifold is the least integer d such that there is an immersion of that manifold into d-dimensional Euclidean space. By using the obstruction theory, we determine the exact value of the immersion dimension for Grassmann manifolds G(3,n) when n is a power of two. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:38 / 42
页数:5
相关论文
共 13 条
[1]   ON THE MULTIPLICATION IN THE CHARACTERISTIC RING OF A SPHERE BUNDLE [J].
CHERN, SS .
ANNALS OF MATHEMATICS, 1948, 49 (02) :362-372
[2]   THE IMMERSION CONJECTURE FOR DIFFERENTIABLE MANIFOLDS [J].
COHEN, RL .
ANNALS OF MATHEMATICS, 1985, 122 (02) :237-328
[3]  
DUTTA S, 2002, J INDIAN MATH SOC, V69, P237
[4]  
Gitler S., 1966, B SOC MAT MEX, V11, P85
[5]   IMMERSION DIMENSION FOR REAL GRASSMANNIANS [J].
HILLER, H ;
STONG, RE .
MATHEMATISCHE ANNALEN, 1981, 255 (03) :361-367
[6]  
Hirsch M. W., 1959, Trans. Amer. Math. Soc, V93, P242, DOI [10.1090/S0002-9947-1959-0119214-4, DOI 10.1090/S0002-9947-1959-0119214-4]
[7]   ON THE STIEFEL-WHITNEY CLASSES OF A MANIFOLD [J].
MASSEY, WS .
AMERICAN JOURNAL OF MATHEMATICS, 1960, 82 (01) :92-102
[8]  
MASSEY WS, 1961, P AM MATH SOC, V12, P33, DOI 10.1090/S0002-9939-1961-0124914-0
[9]  
NUSSBAUM FA, 1970, THESIS NW U
[10]   SOME NON-EMBEDDING THEOREMS FOR GRASSMANN MANIFOLDS G2,N AND G3,N [J].
OPROIU, V .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 1977, 20 (MAR) :177-185