Polarization selective near-field focusing on mesoscopic surface patterns with threefold symmetry measured with PEEM

被引:7
作者
Berndt, Michael [2 ]
Rohmer, Martin [3 ,4 ]
Ashall, Brian [1 ]
Schneider, Christian [3 ,4 ]
Aeschlimann, Martin [3 ,4 ]
Zerulla, Dominic [1 ]
机构
[1] Univ Coll Dublin, Sch Phys, Dublin 4, Ireland
[2] Max Planck Inst Mol Cell Biol & Genet, D-01307 Dresden, Germany
[3] Univ Kaiserslautern, Dept Phys, D-67663 Kaiserslautern, Germany
[4] Univ Kaiserslautern, Res Ctr OPTIMAS, D-67663 Kaiserslautern, Germany
基金
爱尔兰科学基金会;
关键词
D O I
10.1364/OL.34.000959
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Optically active surfaces that can provide strong localization of electromagnetic fields at predefined points are desired for applications that require high spatial resolution and high sensitivity. Here, we examine the geometric influences on, and polarization dependencies of, electromagnetic near fields on the surface of an array of tailor designed, mesoscalic, silver-coated structures with threefold symmetry characteristics. For spatially resolved mapping of the electromagnetic near fields and examining the influence of polarization, we use a photoelectron emission microscope. We find that the investigated structures not only provide an increase of the near-field intensity at their boundaries, but also that the symmetry centers of the structures focus energy in a polarization dependent manner. Changing the polarization of the incident light enables the localization of near-field intensities without displacing the excitation. Hence we show that breaking of symmetry can provide controllable centers of "hot spots" for the basis of an improved design to gain more efficient surface structures. (C) 2009 Optical Society of America
引用
收藏
页码:959 / 961
页数:3
相关论文
共 13 条
[1]   Adaptive subwavelength control of nano-optical fields [J].
Aeschlimann, Martin ;
Bauer, Michael ;
Bayer, Daniela ;
Brixner, Tobias ;
Garcia de Abajo, F. Javier ;
Pfeiffer, Walter ;
Rohmer, Martin ;
Spindler, Christian ;
Steeb, Felix .
NATURE, 2007, 446 (7133) :301-304
[2]   Tailoring surface plasmon polariton propagation via specific symmetry properties of nanostructures [J].
Ashall, B. ;
Berndt, M. ;
Zerulla, D. .
APPLIED PHYSICS LETTERS, 2007, 91 (20)
[3]   Fringe fields in nonlinear photoemission microscopy [J].
Chelaru, LI ;
Horn-von Hoegen, M ;
Thien, D ;
zu Heringdorf, FJM .
PHYSICAL REVIEW B, 2006, 73 (11)
[4]   Photoemission electron microscopy as a tool for the investigation of optical near fields -: art. no. 047601 [J].
Cinchetti, M ;
Gloskovskii, A ;
Nepjiko, SA ;
Schönhense, G ;
Rochholz, H ;
Kreiter, M .
PHYSICAL REVIEW LETTERS, 2005, 95 (04)
[5]   RADIATIVE DECAY OF NON RADIATIVE SURFACE PLASMONS EXCITED BY LIGHT [J].
KRETSCHM.E ;
RAETHER, H .
ZEITSCHRIFT FUR NATURFORSCHUNG PART A-ASTROPHYSIK PHYSIK UND PHYSIKALISCHE CHEMIE, 1968, A 23 (12) :2135-&
[6]  
Lakowicz J. R., 2006, Principles of fluorescence spectroscopy, P383, DOI 10.1007/978-0-387-46312-4
[7]   WORK FUNCTION OF ELEMENTS AND ITS PERIODICITY [J].
MICHAELSON, HB .
JOURNAL OF APPLIED PHYSICS, 1977, 48 (11) :4729-4733
[8]   The lateral photoemission distribution from a defined cluster/substrate system as probed by photoemission electron microscopy [J].
Munzinger, M ;
Wiemann, C ;
Rohmer, M ;
Guo, L ;
Aeschlimann, M ;
Bauer, M .
NEW JOURNAL OF PHYSICS, 2005, 7
[9]  
Novotny L, 2012, Principles of nano-optics, V2nd
[10]  
OTTO A, 1968, Z PHYS, V216, P4398