Magnetic localization and control of helical robots for clearing superficial blood clots

被引:58
作者
Khalil, Islam S. M. [1 ]
Adel, Alaa [2 ]
Mahdy, Dalia [2 ]
Micheal, Mina M. [2 ]
Mansour, Mohanad [2 ]
Hamdi, Nabila [3 ]
Misra, Sarthak [1 ,4 ,5 ]
机构
[1] Univ Twente, Dept Biomech Engn, NL-7500 AE Enschede, Netherlands
[2] German Univ Cairo, Dept Mechatron Engn, New Cairo 11835, Egypt
[3] German Univ Cairo, Dept Pharmacol & Toxicol, New Cairo 11835, Egypt
[4] Univ Groningen, Dept Biomed Engn, NL-9713 AV Groningen, Netherlands
[5] Univ Med Ctr Groningen, NL-9713 AV Groningen, Netherlands
基金
欧洲研究理事会;
关键词
TISSUE-PLASMINOGEN ACTIVATOR; VEIN-THROMBOSIS; POSITION;
D O I
10.1063/1.5090872
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
This work presents an approach for the localization and control of helical robots during removal of superficial blood clots inside in vitro and ex vivo models. The position of the helical robot is estimated using an array of Hall-effect sensors and precalculated magnetic field map of two synchronized rotating dipole fields. The estimated position is used to implement closed-loop motion control of the helical robot using the rotating dipole fields. We validate the localization accuracy by visual feedback and feature tracking inside the in vitro model. The experimental results show that the magnetic localization of a helical robot with diameter of 1mm can achieve a mean absolute position error of 2.35 +/- 0.4 mm (n = 20). The simultaneous localization and motion control of the helical robot enables propulsion toward a blood clot and clearing at an average removal rate of 0.67 +/- 0.47 mm(3)/min. This method is used to localize the helical robot inside a rabbit aorta (ex vivo model), and the localization accuracy is validated using ultrasound feedback with a mean absolute position error of 2.6 mm. (C) 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:10
相关论文
共 35 条
[1]   Neutrophil-inspired propulsion in a combined acoustic and magnetic field [J].
Ahmed, Daniel ;
Baasch, Thierry ;
Blondel, Nicolas ;
Laubli, Nino ;
Dual, Jurg ;
Nelson, Bradley J. .
NATURE COMMUNICATIONS, 2017, 8
[2]  
[Anonymous], 2012, J. Diabetes Metab, DOI DOI 10.4172/2155-6156.1000216
[3]  
[Anonymous], 2016, MYOCARDIAL INFARCTIO
[4]   Acceleration of Tissue Plasminogen Activator-Mediated Thrombolysis by Magnetically Powered Nanomotors [J].
Cheng, Rui ;
Huang, Weijie ;
Huang, Lijie ;
Yang, Bo ;
Mao, Leidong ;
Jin, Kunlin ;
ZhuGe, Qichuan ;
Zhao, Yiping .
ACS NANO, 2014, 8 (08) :7746-7754
[5]   Real-Time Pose Detection for Magnetic Medical Devices [J].
Di Natali, Christian ;
Beccani, Marco ;
Valdastri, Pietro .
IEEE TRANSACTIONS ON MAGNETICS, 2013, 49 (07) :3524-3527
[6]   Microscopic artificial swimmers [J].
Dreyfus, R ;
Baudry, J ;
Roper, ML ;
Fermigier, M ;
Stone, HA ;
Bibette, J .
NATURE, 2005, 437 (7060) :862-865
[7]   Micromotor-enabled active drug delivery for in vivo treatment of stomach infection [J].
Esteban-Fernandez de Avila, Berta ;
Angsantikul, Pavimol ;
Li, Jinxing ;
Lopez-Ramirez, Miguel Angel ;
Ramirez-Herrera, Doris E. ;
Thamphiwatana, Soracha ;
Chen, Chuanrui ;
Delezuk, Jorge ;
Samakapiruk, Richard ;
Ramez, Valentin ;
Zhang, Liangfang ;
Wang, Joseph .
NATURE COMMUNICATIONS, 2017, 8
[8]  
Felfoul O, 2016, NAT NANOTECHNOL, V11, P941, DOI [10.1038/nnano.2016.137, 10.1038/NNANO.2016.137]
[9]  
Freitas Robert A Jr, 2005, Int J Surg, V3, P243, DOI 10.1016/j.ijsu.2005.10.007
[10]   Controlled Propulsion of Artificial Magnetic Nanostructured Propellers [J].
Ghosh, Ambarish ;
Fischer, Peer .
NANO LETTERS, 2009, 9 (06) :2243-2245