Minimum principles and a priori estimates for some translating soliton type problems

被引:2
作者
Enache, Cristian [1 ]
Lopez, Rafael [2 ]
机构
[1] Amer Univ Sharjah, Dept Math & Stat, Univ City Rd,POB 26666, Sharjah, U Arab Emirates
[2] Univ Granada, Dept Geometria & Topol, Inst Matemat IEMath GR, E-18071 Granada, Spain
关键词
Mean curvature flow; Translating solitons; Critical points; Nodal lines; Maximum principles; A priori estimates; MEAN-CURVATURE EQUATION; DIRICHLET PROBLEM; EVOLUTION; HYPERSURFACES; SINGULARITIES; SURFACES; FLOW;
D O I
10.1016/j.na.2019.05.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we are dealing with two classes of mean curvature type problems that generalize the translating soliton problem. A first result proves that the solutions to these problems have unique interior critical points. Using this uniqueness result, we next derive a priori C-0 and C-1 estimates for the solutions to these problems, by means of some minimum principles for appropriate P-functions, in the sense of L. E. Payne. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:352 / 364
页数:13
相关论文
共 33 条