共 6 条
Root jasmonic acid synthesis and perception regulate folivore-induced shoot metabolites and increase Nicotiana attenuata resistance
被引:64
|作者:
Fragoso, Variluska
[1
]
Rothe, Eva
[1
]
Baldwin, Ian T.
[1
]
Kim, Sang-Gyu
[1
]
机构:
[1] Max Planck Inst Chem Oekol, Dept Mol Ecol, Hans Knoll Str 8, D-07745 Jena, Germany
基金:
欧洲研究理事会;
新加坡国家研究基金会;
关键词:
above-ground herbivores;
jasmonates;
leaf wounding;
nicotine;
plant defense;
plant tolerance;
roots;
METHYL JASMONATE;
MANDUCA-SEXTA;
DEFENSE;
HERBIVORY;
BIOSYNTHESIS;
RESPONSES;
ETHYLENE;
PLANTS;
CARBON;
ATTACK;
D O I:
10.1111/nph.12747
中图分类号:
Q94 [植物学];
学科分类号:
071001 ;
摘要:
While jasmonic acid (JA) signaling is widely accepted as mediating plant resistance to herbivores, and the importance of the roots in plant defenses is recently being recognized, the role of root JA in the defense of above-ground parts remains unstudied. To restrict JA impairment to the roots, we micrografted wildtype Nicotiana attenuata shoots to the roots of transgenic plants impaired in JA signaling and evaluated ecologically relevant traits in the glasshouse and in nature. Root JA synthesis and perception are involved in regulating nicotine production in roots. Strikingly, systemic root JA regulated local leaf JA and abscisic acid (ABA) concentrations, which were associated with differences in nicotine transport from roots to leaves via the transpiration stream. Root JA signaling also regulated the accumulation of other shoot metabolites; together these account for differences in resistance against a generalist, Spodoptera littoralis, and a specialist herbivore, Manduca sexta. In N.attenuata's native habitat, silencing root JA synthesis increased the shoot damage inflicted by Empoasca leafhoppers, which are able to select natural jasmonate mutants. Silencing JA perception in roots also increased damage by Tupiocoris notatus. We conclude that attack from above-ground herbivores recruits root JA signaling to launch the full complement of plant defense responses.
引用
收藏
页码:1335 / 1345
页数:11
相关论文