Rolling Riemannian Manifolds to Solve the Multi-class Classification Problem

被引:25
作者
Caseiro, Rui [1 ]
Martins, Pedro [1 ]
Henriques, Joao F. [1 ]
Leite, Fatima Silva [1 ]
Batista, Jorge [1 ]
机构
[1] Univ Coimbra, Inst Syst & Robot, P-3000 Coimbra, Portugal
来源
2013 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR) | 2013年
关键词
ILLUMINATION;
D O I
10.1109/CVPR.2013.13
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the past few years there has been a growing interest on geometric frameworks to learn supervised classification models on Riemannian manifolds [,]. A popular framework, valid over any Riemannian manifold, was proposed in [] for binary classification. Once moving from binary to multi-class classification this paradigm is not valid anymore, due to the spread of multiple positive classes on the manifold []. It is then natural to ask whether the multi-class paradigm could be extended to operate on a large class of Riemannian manifolds. We propose a mathematically well-founded classification paradigm that allows to extend the work in [] to multi-class models, taking into account the structure of the space. The idea is to project all the data from the manifold onto an affine tangent space at a particular point. To mitigate the distortion induced by local diffeomorphisms, we introduce for the first time in the computer vision community a well-founded mathematical concept, so-called Rolling map [,] The novelty in this alternate school of thought is that the manifold will be firstly rolled (without slipping or twisting) as a rigid body, then the given data is unwrapped onto the affine tangent space, where the classification is performed.
引用
收藏
页码:41 / 48
页数:8
相关论文
共 31 条