Approximations of non-smooth integral type functionals of one dimensional diffusion processes

被引:12
作者
Kohatsu-Higa, A. [1 ,2 ]
Makhlouf, A. [2 ,3 ]
Ngo, H. L. [2 ,4 ]
机构
[1] Ritsumeikan Univ, Kusatsu, Shiga 5258577, Japan
[2] Japan Sci & Technol Agcy, Tokyo, Japan
[3] Univ Tunis El Manar, Tunis, Tunisia
[4] Hanoi Natl Univ Educ, Hanoi, Vietnam
关键词
Non-smooth functionals of one-dimensional diffusions; Occupation time; Local time; Approximation; OCCUPATION TIME; DISCRETIZATION; CONVERGENCE; SIMULATION;
D O I
10.1016/j.spa.2014.01.003
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article, we obtain the weak and strong rates of convergence of time integrals of non-smooth functions of a one dimensional diffusion process. We propose the use of the exact simulation scheme to simulate the process at discretization points. In particular, we also present the rates of convergence for the weak and strong errors of approximation for the local time of a one dimensional diffusion process as an application of our method. (c) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:1881 / 1909
页数:29
相关论文
共 17 条
  • [1] DISCRETIZATION ERROR IN SIMULATION OF ONE-DIMENSIONAL REFLECTING BROWNIAN MOTION
    Asmussen, Soren
    Glynn, Peter
    Pitman, Jim
    [J]. ANNALS OF APPLIED PROBABILITY, 1995, 5 (04) : 875 - 896
  • [2] Optimal investment strategy to minimize occupation time
    Bayraktar, Erhan
    Young, Virginia R.
    [J]. ANNALS OF OPERATIONS RESEARCH, 2010, 176 (01) : 389 - 408
  • [3] Retrospective exact simulation of diffusion sample paths with applications
    Beskos, Alexandros
    Papaspiliopoulos, Omiros
    Roberts, Gareth O.
    [J]. BERNOULLI, 2006, 12 (06) : 1077 - 1098
  • [4] Carr P., 2000, European Finance Review, V4, P211, DOI 10.1023/A:1011441824560
  • [5] Davydov D., 2001, J COMPUT FINANCE, V5
  • [6] Friedman A., 1983, Partial Differential Equations
  • [7] Fujita T., 2002, ASIA PAC FINANC MARK, V9, P141
  • [8] Fusai G., 2001, J COMPUT FINANCE, V5
  • [9] Giet J.S., 2002, EULER SCHEME ROUGH F
  • [10] Sharp estimates for the convergence of the density of the Euler scheme in small time
    Gobet, Emmanuel
    Labart, Celine
    [J]. ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2008, 13 : 352 - 363