The quaking I-5 protein (QKI-5) has a novel nuclear localization signal and shuttles between the nucleus and the cytoplasm

被引:116
作者
Wu, J
Zhou, L
Tonissen, K
Tee, R
Artzt, K
机构
[1] Univ Texas, Inst Cellular & Mol Biol, Austin, TX 78712 USA
[2] Univ Texas, Dept Microbiol, Austin, TX 78712 USA
关键词
D O I
10.1074/jbc.274.41.29202
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The mouse quaking (qk) gene is essential in both myelination and early embryogenesis. Its product, QKI is an RNA-binding protein belonging to a growing protein family called STAR (signal transduction and activator of RNA). All members have an similar to 200-amino acid STAR domain, which contains a single extended heteronuclear ribonucleoprotein K homologue domain flanked by two domains called QUA1 and QUA2. We found that QKI isoforms could associate with each other, while one of the lethal mutations qkI(kt4) with a single amino acid change in QUA1 domain, leads to a loss of QKI self-interaction. This suggests that the QUA1 domain is responsible for QKI dimerization. Three QKI isoforms have different carboxyl termini and different subcellular localization. Here, using GFP fusion protein, we identified a 7-amino acid novel nuclear localization sequence in the carboxyl terminus of QKI-5, which is conserved in a subclass of STAR proteins containing SAM68 and ETLE/T-STAR. Thus, we name this motif STAR-NLS. In addition, the effects of active transcription, RNA-binding and self-interaction on QKI-5 localization were analyzed. Furthermore, using an interspecies heterokaryon assay, we found that QKI-5, but not another STAR protein ETLE, shuttles between the nucleus and the cytoplasm, which suggests that QKI-5 functions in both cell compartments.
引用
收藏
页码:29202 / 29210
页数:9
相关论文
共 57 条
[1]   Cross-intron bridging interactions in the yeast commitment complex are conserved in mammals [J].
Abovich, N ;
Rosbash, M .
CELL, 1997, 89 (03) :403-412
[2]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[3]  
Arning S, 1996, RNA, V2, P794
[4]  
Baehrecke EH, 1997, DEVELOPMENT, V124, P1323
[5]   A role for Sam68 in cell cycle progression antagonized by a spliced variant within the KH domain [J].
Barlat, I ;
Maurier, F ;
Duchesne, M ;
Guitard, E ;
Tocque, B ;
Schweighoffer, F .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (06) :3129-3132
[6]   REGULATION OF THE YEAST HO GENE [J].
BREEDEN, L ;
NASMYTH, K .
COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY, 1985, 50 :643-650
[7]   A specific subset of SR proteins shuttles continuously between the nucleus and the cytoplasm [J].
Cáceres, JF ;
Screaton, GR ;
Krainer, AR .
GENES & DEVELOPMENT, 1998, 12 (01) :55-66
[8]  
CAMPAGNONI AT, 1991, ANN NY ACAD SCI, V633, P178
[9]   Structure-function analysis of Qk1:: a lethal point mutation in mouse quaking prevents homodimerization [J].
Chen, TP ;
Richard, S .
MOLECULAR AND CELLULAR BIOLOGY, 1998, 18 (08) :4863-4871
[10]   Self-association of the single-KH-domain family members Sam68, GRP33, GLD-1, and Qk1: Role of the KH domain [J].
Chen, TP ;
Damaj, BB ;
Herrera, C ;
Lasko, P ;
Richard, S .
MOLECULAR AND CELLULAR BIOLOGY, 1997, 17 (10) :5707-5718