3D PostureNet: A unified framework for skeleton-based posture recognition

被引:23
作者
Liu, Jianbo [1 ,2 ]
Wang, Ying [1 ]
Liu, Yongcheng [1 ,2 ]
Xiang, Shiming [1 ]
Pan, Chunhong [1 ]
机构
[1] Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
Human posture recognition; Static hand gesture recognition; Skeleton-based; 3D convolutional neural network; SYSTEM;
D O I
10.1016/j.patrec.2020.09.029
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Image-based posture recognition is a very challenging problem as it is difficult to acquire rich 3D information from postures in 2D images. Existing methods founded on 3D skeleton cues could alleviate this issue, but they are not particularly efficient due to the application of handcrafted features and traditional classifiers. This paper presents a novel and unified framework for skeleton-based posture recognition, applying powerful 3D Convolutional Neural Network (CNN) to this issue. Technically, bounding-box-based normalization for the raw skeleton data is proposed to eliminate the coordinate differences caused by diverse recording environments and posture displacements. Moreover, Gaussian voxelization for the skeleton is employed to expressively represent the posture configuration. Thereby, an end-to-end framework based on 3D CNN, called 3D PostureNet, is developed for robust posture recognition. To verify its effectiveness, a large-scale writing posture dataset is created and released in this work, including 113,400 samples of 30 subjects with 15 postures. Extensive experiments on the public MSRA hand gesture dataset, body pose dataset and the proposed writing posture dataset demonstrate that 3D PostureNet achieves significantly superior performance on both skeleton-based human posture and hand posture recognition tasks. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页码:143 / 149
页数:7
相关论文
共 50 条
  • [21] Recognition technology research based on 3D fingerprint
    Tian, Qianxiao
    Huang, Shujun
    Zhang, Zonghua
    REAL-TIME PHOTONIC MEASUREMENTS, DATA MANAGEMENT, AND PROCESSING, 2014, 9279
  • [22] Learning Multi-Granular Spatio-Temporal Graph Network for Skeleton-based Action Recognition
    Chen, Tailin
    Zhou, Desen
    Wang, Jian
    Wang, Shidong
    Guan, Yu
    He, Xuming
    Ding, Errui
    PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2021, 2021, : 4334 - 4342
  • [23] Spatio-Temporal Transformer with Kolmogorov-Arnold Network for Skeleton-Based Hand Gesture Recognition
    Han, Pengcheng
    He, Xin
    Matsumaru, Takafumi
    Dutta, Vibekananda
    SENSORS, 2025, 25 (03)
  • [24] A skeleton-based assembly action recognition method with feature fusion for human-robot collaborative assembly
    Liu, Daxin
    Huang, Yu
    Liu, Zhenyu
    Mao, Haoyang
    Kan, Pengcheng
    Tan, Jianrong
    JOURNAL OF MANUFACTURING SYSTEMS, 2024, 76 : 553 - 566
  • [25] Skeleton-Based Dynamic Hand Gesture Recognition Using an Enhanced Network with One-Shot Learning
    Ma, Chunyong
    Zhang, Shengsheng
    Wang, Anni
    Qi, Yongyang
    Chen, Ge
    APPLIED SCIENCES-BASEL, 2020, 10 (11):
  • [26] Multi-scale spatial-temporal convolutional neural network for skeleton-based action recognition
    Cheng, Qin
    Cheng, Jun
    Ren, Ziliang
    Zhang, Qieshi
    Liu, Jianming
    PATTERN ANALYSIS AND APPLICATIONS, 2023, 26 (03) : 1303 - 1315
  • [27] Improving bag-of-poses with semi-temporal pose descriptors for skeleton-based action recognition
    Agahian, Saeid
    Negin, Farhood
    Kose, Cemal
    VISUAL COMPUTER, 2019, 35 (04) : 591 - 607
  • [28] Improving bag-of-poses with semi-temporal pose descriptors for skeleton-based action recognition
    Saeid Agahian
    Farhood Negin
    Cemal Köse
    The Visual Computer, 2019, 35 : 591 - 607
  • [29] Dynamic Semantic-Based Spatial-Temporal Graph Convolution Network for Skeleton-Based Human Action Recognition
    Xie, Jianyang
    Meng, Yanda
    Zhao, Yitian
    Nguyen, Anh
    Yang, Xiaoyun
    Zheng, Yalin
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2024, 33 : 6691 - 6704
  • [30] 3D Fingerprint Recognition based on Ridge-Valley-Guided 3D Reconstruction and 3D Topology Polymer Feature Extraction
    Yin, Xuefei
    Zhu, Yanming
    Hu, Jiankun
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2021, 43 (03) : 1085 - 1091