Gevrey solutions of singularly perturbed differential equations

被引:0
作者
Canalis-Durand, M [1 ]
Ramis, JP
Schäfke, R
Sibuya, Y
机构
[1] Univ Aix Marseille 2, Ecole Hautes Etud Sci Sociales, F-13000 Marseille, France
[2] Univ Aix Marseille 3, Ecole Hautes Etud Sci Sociales, F-13000 Marseille, France
[3] Univ Toulouse 3, Lab Topol & Geometrie, F-31062 Toulouse, France
[4] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
[5] Univ Strasbourg, IRMA, F-67084 Strasbourg, France
来源
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK | 2000年 / 518卷
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:95 / 129
页数:35
相关论文
共 46 条
[1]  
[Anonymous], 1985, LINEAR TURNING POINT
[2]  
ARNOLD VI, 1978, CHAPITRES SUPPLEMENT
[3]  
ARNOLD VI, 1988, 17 INT C THEOR APPL
[4]  
Balser W., 1994, LECT NOTES MATH, V1582
[5]   Overstability: Towards a global study [J].
Benoit, E ;
Fruchard, A ;
Schafke, R ;
Wallet, G .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 326 (07) :873-878
[6]  
Benoit E., 1998, ANN FAC SCI TOULOUSE, V7, P627, DOI [10.5802/afst.913, DOI 10.5802/AFST.913]
[7]  
BENOIT E., 1981, COLLECTANEA MATH BAR, V31, P37
[8]  
CANALISDURAND M, 1991, LECT NOTES MATH, V1493, P29
[9]   GEVREY FORMAL SOLUTION OF A SINGULARLY PERTURBED EQUATION - THE MULTIDIMENSIONAL CASE [J].
CANALISDURAND, M .
ANNALES DE L INSTITUT FOURIER, 1993, 43 (02) :469-483
[10]  
CANALISDURAND M, 1990, CR ACAD SCI I-MATH, V311, P27