Inequalities between ∥f(A+B)∥ and ∥f(A)+f(B)∥

被引:45
作者
Kosem, Tomaz [1 ]
机构
[1] Univ Ljubljana, Inst Math Phys & Mech, SI-1000 Ljubljana, Slovenia
关键词
unitarily invariant norm; inequality; operator monotone function; positive-semidefinite matrix; convex function; concave function; functional calculus;
D O I
10.1016/j.laa.2006.01.028
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The conjecture posed by Aujla and Silva [J.S. Aujla, F.C. Silva, Weak majorization inequalities and convex functions, Linear Algebra Appl. 369 (2003) 217-233] is proved. It is shown that for any m-tuple of positive-semidefinite n x n complex matrices A(j) and for any non-negative convex function f on [0, infinity) with f (0) = 0 the inequality vertical bar vertical bar vertical bar f(A(1)) + f(A(2)) + center dot center dot center dot + f(A(m))vertical bar vertical bar vertical bar <= vertical bar vertical bar vertical bar f(A(1) + A(2) + center dot center dot center dot + A(m))vertical bar vertical bar vertical bar holds for any unitarily invariant norm vertical bar vertical bar vertical bar center dot vertical bar vertical bar vertical bar. It is also proved that vertical bar vertical bar vertical bar f(A(1)) + f(A(2)) + center dot center dot center dot + f(A(m))vertical bar vertical bar vertical bar >= f(vertical bar vertical bar vertical bar A(1) + A(2) + center dot center dot center dot + A(m)vertical bar vertical bar vertical bar), where f is a non-negative concave function on [0, infinity) and vertical bar vertical bar vertical bar center dot vertical bar vertical bar vertical bar is normalized. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:153 / 160
页数:8
相关论文
共 8 条
[1]   Norm inequalities related to operator monotone functions [J].
Ando, T ;
Zhan, XG .
MATHEMATISCHE ANNALEN, 1999, 315 (04) :771-780
[2]   Weak majorization inequalities and convex functions [J].
Aujla, JS ;
Silva, FC .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2003, 369 :217-233
[3]   Clarkson inequalities with several operators [J].
Bhatia, R ;
Kittaneh, F .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2004, 36 :820-832
[4]  
BHATIA R., 1997, GTM, V169
[5]  
Birman M. Sh., 1987, SPECTRAL THEORY SELF
[6]  
Conway J.B., 1990, GTM, V96
[7]  
Drnovsek R, 2005, MATH INEQUAL APPL, V8, P1
[8]  
ZHAN X, 2002, LNM, V1790