Direct Solid Oxide Electrolysis of Carbon Dioxide: Analysis of Performance and Processes

被引:21
作者
Foit, Severin [1 ]
Dittrich, Lucy [1 ,2 ]
Duyster, Tobias [1 ]
Vinke, Izaak [1 ]
Eichel, Rudiger-A. [1 ,2 ]
de Haart, L. G. J. [1 ]
机构
[1] Forschungszentrum Julich, Inst Energy & Climate Res, Fundamental Electrochem IEK 9, D-52425 Julich, Germany
[2] Rhein Westfal TH Aachen, Inst Phys Chem, D-52074 Aachen, Germany
关键词
carbon dioxide; solid oxide electrolysis; carbon dioxide utilization; CO2-electrolysis; high-temperature electrolysis; carbon dioxide reduction; CO2; ELECTROLYSIS; ELECTROCHEMICAL REDUCTION; FUEL-CELL; CATHODE; IMPEDANCE;
D O I
10.3390/pr8111390
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Chemical industries rely heavily on fossil resources for the production of carbon-based chemicals. A possible transformation towards sustainability is the usage of carbon dioxide as a source of carbon. Carbon dioxide is activated for follow-up reactions by its conversion to carbon monoxide. This can be accomplished by electrochemical reduction in solid oxide cells. In this work, we investigate the process performance of the direct high-temperature CO2 electrolysis by current-voltage characteristics (iV) and Electrochemical Impedance Spectroscopy (EIS) experiments. Variations of the operation parameters temperature, load, fuel utilization, feed gas ratio and flow rate show the versatility of the procedure with maintaining high current densities of 0.75 up to 1.5 A.cm(-2), therefore resulting in high conversion rates. The potential of the high-temperature carbon dioxide electrolysis as a suitable enabler for the activation of CO2 as a chemical feedstock is therefore appointed and shown.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 27 条
[1]   ZIRCONIA-BASED SOLID ELECTROLYTES - MICROSTRUCTURE, STABILITY AND IONIC-CONDUCTIVITY [J].
BADWAL, SPS .
SOLID STATE IONICS, 1992, 52 (1-3) :23-32
[2]   Efficient reduction of CO2 in a solid oxide electrolyzer [J].
Bidrawn, F. ;
Kim, G. ;
Corre, G. ;
Irvine, J. T. S. ;
Vohs, J. M. ;
Gorte, R. J. .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2008, 11 (09) :B167-B170
[3]  
Dittrich L., 2018, CHEM-ING-TECH, V90, P1158, DOI [10.1002/cite.201855057, DOI 10.1002/CITE.201855057]
[4]   High-Temperature Co-Electrolysis: A Versatile Method to Sustainably Produce Tailored Syngas Compositions [J].
Dittrich, Lucy ;
Nohl, Markus ;
Jaekel, Esther E. ;
Foit, Severin ;
de Haart, L. G. J. ;
Eichel, Ruediger-A .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2019, 166 (13) :F971-F975
[5]   Understanding the processes governing performance and durability of solid oxide electrolysis cells [J].
Ebbesen, Sune Dalgaard ;
Sun, Xiufu ;
Mogensen, Mogens Bjerg .
FARADAY DISCUSSIONS, 2015, 182 :393-422
[6]  
Foit S. R., 2019, ECS Transactions, V91, P2467, DOI 10.1149/09101.2467ecst
[7]   Co-Electrolysis, Quo Vadis? [J].
Foit, S. R. ;
Dittrich, L. ;
Vibhu, V. ;
Vinke, I. C. ;
Eichel, R. -A. ;
de Haart, L. G. J. .
SOLID OXIDE FUEL CELLS 15 (SOFC-XV), 2017, 78 (01) :3139-3147
[8]   Power-to-Syngas: An Enabling Technology for the Transition of the Energy System? [J].
Foit, Severin R. ;
Vinke, Izaak C. ;
de Haart, Lambertus G. J. ;
Eichel, Ruediger-A. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (20) :5402-5411
[9]   Technical photosynthesis involving CO2 electrolysis and fermentation [J].
Haas, Thomas ;
Krause, Ralf ;
Weber, Rainer ;
Demler, Martin ;
Schmid, Guenter .
NATURE CATALYSIS, 2018, 1 (01) :32-39
[10]   Methane reforming kinetics within a Ni-YSZ SOFC anode support [J].
Hecht, ES ;
Gupta, GK ;
Zhu, HY ;
Dean, AM ;
Kee, RJ ;
Maier, L ;
Deutschmann, O .
APPLIED CATALYSIS A-GENERAL, 2005, 295 (01) :40-51