The low activity phase of some Dirichlet series

被引:6
作者
Contucci, P [1 ]
Knauf, A [1 ]
机构
[1] TECH UNIV BERLIN,FACHBEREICH MATH 3,D-10623 BERLIN,GERMANY
关键词
D O I
10.1063/1.531717
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show that a rigorous statistical mechanics description of some Dirichlet series is possible. Using the abstract polymer model language of statistical mechanics and the polymer expansion theory we characterize the low activity phase by the suitable exponential decay of the truncated correlation functions. (C) 1996 American Institute of Physics.
引用
收藏
页码:5458 / 5475
页数:18
相关论文
共 24 条
  • [1] [Anonymous], 1974, COLLECTED PAPERS
  • [2] Apostol T., 1976, UNDERGRADUATE TEXTS
  • [3] Bost J.-B., 1995, Selecta Math. (N.S.), V1, P411, DOI [10.1007/BF01589495, DOI 10.1007/BF01589495]
  • [4] BOST JB, 1992, CR ACAD SCI I-MATH, V315, P279
  • [5] BRYDGES D, 1994, LECT NOTES PHYSICS, V446
  • [6] BRYDGES D, 1991, FUNCTIONAL INTEGRALS
  • [7] An analyticity bound for two-dimensional ising model at low temperature
    Contucci, P
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1996, 82 (5-6) : 1647 - 1657
  • [8] CONTUCCI P, IN PRESS FORUM MATH
  • [9] CVITANOVIC P, 1992, NUMBER THEORY PHYSIC
  • [10] DOBRUSHIN R, 1994, 125 ESI